

## Solving Geometric problems & Modelling Difficulty: Medium

## **Question Paper 1**

| Level      | AS & A Level                           |
|------------|----------------------------------------|
| Subject    | Maths - Pure                           |
| Exam Board | Edexcel                                |
| Торіс      | Vectors                                |
| Sub-Topic  | Solving Geometric problems & modelling |
| Difficulty | Medium                                 |
| Booklet    | Question Paper 1                       |

| Time allowed: | 36 minutes |
|---------------|------------|
| Score:        | /30        |
| Percentage:   | /100       |

**Grade Boundaries:** 

1

| A*   | А   | В   | С   | D   | E   | U    |
|------|-----|-----|-----|-----|-----|------|
| >76% | 61% | 52% | 42% | 33% | 23% | <23% |





The quadrilateral *OABC* has  $\overrightarrow{OA} = 4\mathbf{i} + 2\mathbf{j}$ ,  $\overrightarrow{OB} = 6\mathbf{i} - 3\mathbf{j}$  and  $\overrightarrow{OC} = 8\mathbf{i} - 20\mathbf{j}$ .

(a) Find  $\overrightarrow{AB}$ .

(2)

(b) Show that quadrilateral OABC is a trapezium.

(2)

(Total 4 marks)







*OPQR* is a parallelogram. *O* is the origin.  $\overrightarrow{OP} = \mathbf{p}$  and  $\overrightarrow{OR} = \mathbf{r}$ . *M* is the mid-point of *PQ* and *L* is on *OR* such that OL: LR = 2:1. The line *PL* is extended to the point *S*.

(a) Find, in terms of **p** and **r**, in their simplest forms,

(i) 
$$\vec{OQ}$$
, [1]

- (ii)  $\overrightarrow{PR}$ , [1]
- (iii)  $\overrightarrow{PL}$ , [1]
- (iv) the position vector of M. [1]



## (b) *PLS* is a straight line and $PS = \frac{\check{s}}{\check{a}} PL$ .

Find, in terms of  ${\bm p}$  and/or  ${\bm r},$  in their simplest forms,

(i) 
$$\overrightarrow{PS}$$
, [1]

(ii)  $\overrightarrow{QS}$ .

(c) What can you say about the points Q, R and S?

[1]

[2]



(c)



(a) Describe fully the single transformation represented by the matrix 
$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
. [2]

(b) Find the matrix that represents a clockwise rotation of 90° about the origin.



In the diagram, *O* is the origin and *P* lies on *AB* such that AP : PB = 3 : 4.  $\overrightarrow{OA} = \mathbf{a}$  and  $\overrightarrow{OB} = \mathbf{b}$ .

(i) Find  $\overrightarrow{OP}$ , in terms of **a** and **b**, in its simplest form.

[3]

[2]

(ii) The line *OP* is extended to *C* such that  $\overrightarrow{OC} = mOP$  and BC = ka.

Find the value of m and the value of k.

[2]





(a) 
$$\mathbf{m} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
  $\mathbf{n} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$ 

(i) Work out 
$$2m - 3n$$
. [2]

(ii) Calculate  $2\mathbf{m} - 3\mathbf{n}$ .

[2]

(b) (i)



In the diagram, *O* is the origin,  $\overrightarrow{OA} = \mathbf{a}$  and  $\overrightarrow{OB} = \mathbf{b}$ . The point *M* lies on *AB* such that *AM* : *MB* = 3 : 2.

Find, in terms of **a** and **b**, in its simplest form

| (a) | ΑB, | [1] |  |
|-----|-----|-----|--|
|-----|-----|-----|--|

(b)  $\overrightarrow{AM}$ ,

[1]



(c) the position vector of *M*.

[2]

(ii) OM is extended to the point C. The position vector of C is  $\mathbf{a} + k\mathbf{b}$ .

Find the value of *k*.

[1]







*OPQR* is a rectangle and *O* is the origin. *M* is the midpoint of RQ and PT : TQ = 2 : 1. *OP* = **p** and *OR* = **r**.

(a) Find, in terms of  $\mathbf{p}$  and/or  $\mathbf{r}$ , in its simplest form

$$(i) \quad MQ, \tag{1}$$

(iii) 
$$\overrightarrow{OT}$$
. [1]



(b) RQ and OT are extended to meet at U.

Find the position vector of U in terms of  $\mathbf{p}$  and  $\mathbf{r}$ . Give your answer in its simplest form.

(c)  $\overrightarrow{MT} = \begin{pmatrix} 2k \\ -k \end{pmatrix}$  and  $|\overrightarrow{MT}| = \sqrt{180}$ .

Find the positive value of *k*.

[3]

[2]