

Graphs & Finding regions Difficulty: Easy

Question Paper 1

Level	AS & A Level
Subject	Maths - Pure
Exam Board	Edexcel
Торіс	Equations and inequalities
Sub-Topic	Graphs & Finding regions
Difficulty	Easy
Booklet	Question Paper 1

Time allowed:	40 minutes		
Score:	/33		
Percentage:	/100		

Grade Boundaries:

A*	А	В	С	D	E	U
>76%	61%	52%	42%	33%	23%	<23%

(a) On the grid, draw the lines x = 1, y = 2 and x + y = 5.

[3]

(b) Write R in the region where $x \ge 1$, $y \ge 2$ and $x + y \ge 5$. [1]

Find the three inequalities which define the shaded region on the grid.

[5]

A new school has *x* day students and *y* boarding students.

The fees for a day student are \$600 a term. The fees for a boarding student are \$1200 a term. The school needs at least \$720 000 a term.

(a) Show that this information can be written as $x + 2y \ge 1200$.	[1]
--	-----

- (b) The school has a maximum of 900 students. Write down an inequality in x and y to show this information. [1]
- (c) Draw two lines on the grid below and write the letter **R** in the region which represents these two inequalities.

(d) What is the least number of **boarding** students at the school?

[1]

(a) One of the lines in the diagram is labelled y = mx + c. Find the values of *m* and *c*.

[1]

[1]

(b) Show, by shading all the **unwanted** regions on the diagram, the region defined by the inequalities

 $x \ge 1$, $y \le mx + c$, $y \ge x + 2$ and $y \ge 4$.

Write the letter **R** in the region required.

[2]

Marina goes to the shop to buy loaves of bread and cakes. One loaf of bread costs 60 cents and one cake costs 80 cents. She buys x loaves of bread and y cakes.

(a) She must not spend more than \$12. Show that $3x + 4y \le 60$.

(b) The number of loaves of bread must be greater than or equal to the number of cakes. Write down an inequality in x and y to show this information.

[1]

[1]

(c) On the grid below show the two inequalities by shading the **unwanted** regions. Write *R* in the required region.

[1]

A ferry has a deck area of 3600 m^2 for parking cars and trucks. Each car takes up 20 m² of deck area and each truck takes up 80 m². On one trip, the ferry carries *x* cars and *y* trucks.

(a) Show that this information leads to the inequality $x + 4y \le 180$.

[2]

(b) The charge for the trip is \$25 for a car and \$50 for a truck. The total amount of money taken is \$3000. Write down an equation to represent this information and simplify it.

(c) The line x + 4y = 180 is drawn on the grid below.

(ii)

Write down a possible number of cars and a possible number of trucks on the trip, which together satisfy both conditions.

[1]