Vectors

Difficulty: Hard

Question Paper 3

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors and transformations
Sub-Topic	Vectors
Paper	Paper 2
Difficulty	Hard
Booklet	Question Paper 3

Time allowed: $\quad 39$ minutes

Score:
/30
Percentage: /100

Grade Boundaries:
CIE IGCSE Maths (0580)

A*	A	B	C	D	E
$>88 \%$	76%	63%	51%	40%	30%

CIE IGCSE Maths (0980)

9	8	7	6	5	4	3
$>94 \%$	85%	77%	67%	57%	47%	35%

O is the origin.
$A B C D E F$ is a regular hexagon and O is the midpoint of $A D$.
$\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O C}=\mathbf{c}$.
Find, in terms of \mathbf{a} and \mathbf{c}, in their simplest form
(a) $\overrightarrow{B E}$,
(b) $\overrightarrow{D B}$,
(c) the position vector of E.

A and B have position vectors \mathbf{a} and \mathbf{b} relative to the origin O.
C is the midpoint of $A B$ and B is the midpoint of $A D$.
Find, in terms of \mathbf{a} and \mathbf{b}, in their simplest form
(a) the position vector of C,
(b) the vector $\overrightarrow{C D}$.

O is the origin, $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O C}=\mathbf{c}$ and $\overrightarrow{C B}=4 \mathbf{a}$.
M is the midpoint of $A B$.
(a) Find, in terms of \mathbf{a} and \mathbf{c}, in their simplest form
(i) the vector $\overrightarrow{A B}$,
(ii) the position vector of M.
(b) Mark the point D on the diagram where $\overrightarrow{O D}=3 \mathbf{a}+\mathbf{c}$.

O is the origin and $O A B C$ is a parallelogram.
$C P=P B$ and $A Q=Q B$.
$\overrightarrow{O A}=\mathrm{a}$ and $\overrightarrow{O C}=\mathrm{c}$.
Find in terms of a and c, in their simplest form,
(a) $\overrightarrow{P Q}$,
(b) the position vector of M, where M is the midpoint of $P Q$.
$\overrightarrow{A B}=\mathbf{a}+t \mathbf{b}$ and $\overrightarrow{C D}=\mathbf{a}+(3 t-5) \mathbf{b}$ where t is a number.
Find the value of t when $\overrightarrow{A B}=\overrightarrow{C D}$.

The origin O is the centre of the octagon $P Q R S T U V W$.
$\overrightarrow{U V}=\mathbf{a}$ and $\overrightarrow{W P}=\mathbf{b}$.
(a) Write down in terms of \mathbf{a} and \mathbf{b}
(i) $\overrightarrow{V W}$,
(ii) $\overrightarrow{T U}$,
(iii) $\overrightarrow{T P}$,
(iv) the position vector of the point P.
(b) In the diagram, 1 centimetre represents 1 unit.

Write down the value of $|\mathbf{a}-\mathbf{b}|$.

$O A B C$ is a parallelogram. $\overrightarrow{O A}=$ a and $\overrightarrow{O C}=\mathrm{c}$. M is the mid-point of $O B$.
Find $\overrightarrow{M A}$ in terms of a and c .
[2]

