Vectors Difficulty: Easy

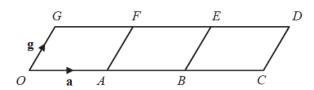
Question Paper 3

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors and transformations
Sub-Topic	Vectors
Paper	Paper 2
Difficulty	Easy
Booklet	Question Paper 3

Time allowed: 37 minutes

Score: /29

Percentage: /100

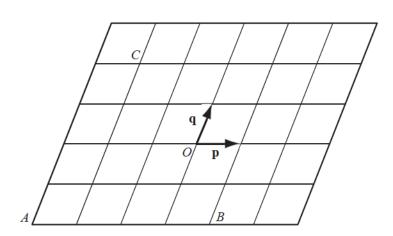

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D	Е
>88%	76%	63%	51%	40%	30%

CIE IGCSE Maths (0980)

9	8	7	6	5	4	3	
>94%	85%	77%	67%	57%	47%	35%	



The diagram is made from three identical parallelograms.

O is the origin. $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OG} = \mathbf{g}$.

Write down in terms of a and g

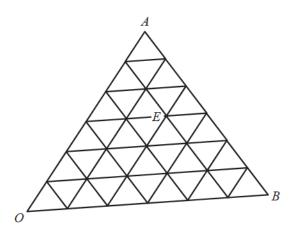
(a)
$$\overrightarrow{GB}$$
,

O is the origin. Vectors p and q are shown in the diagram.

- (a) Write down, in terms of p and q, in their simplest form
 - (i) the position vector of the point A,

[1]

(ii)
$$\overrightarrow{BC}$$
,

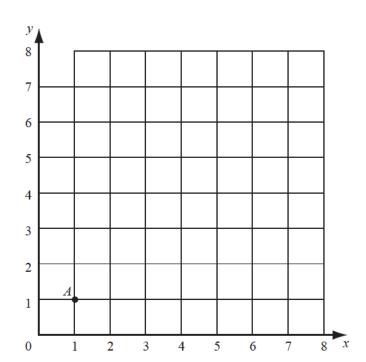

[1]

(iii)
$$\overrightarrow{BC} - \overrightarrow{AC}$$
.

[2]

(b) If
$$|p| = 2$$
, write down the value of $|AB|$.

[1]

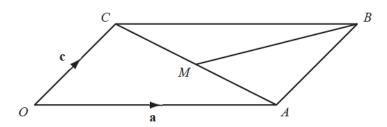

O is the origin, $\overrightarrow{OA} = a$ and $\overrightarrow{OB} = b$.

(a) C has position vector $\frac{1}{3} \mathbf{a} + \frac{2}{3} \mathbf{b}$.

Mark the point C on the diagram.

[1]

- (b) Write down, in terms of \mathbf{a} and \mathbf{b} , the position vector of the point E.
- (c) Find, in terms of **a** and **b**, the vector \overrightarrow{EB} .

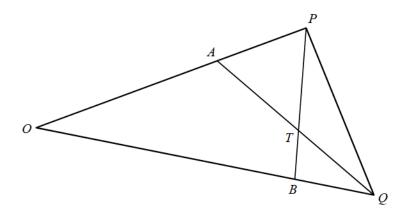

(a) Using a scale of 1cm to represent 1 unit, draw the vectors

$$\overrightarrow{AB} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$
 and $\overrightarrow{BC} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$ on the grid above. [2]

(b) ABCD is a parallelogram.

Write down the coordinates of D. [2]

(c) Calculate $|\overrightarrow{AB}|$. [2]



 \overrightarrow{OABC} is a parallelogram. $\overrightarrow{OA} = a$, $\overrightarrow{OC} = c$ and M is the mid-point of CA. Find in terms of a and c

(a) \overrightarrow{OB} , [1]

(b) \overrightarrow{CA} , [1]

(c) \overrightarrow{BM} . [2]

NOT TO SCALE

In the diagram $OA = \frac{2}{3}OP$ and $OB = \frac{3}{4}OQ$. $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OQ} = \mathbf{q}$.

[2]

- (a) Find in terms of p and q
 - (i) \overrightarrow{AQ} ,

(ii)
$$\overrightarrow{BP}$$
. [2]

(b) AQ and BP intersect at T. $BT = \frac{1}{3}BP$. Find \overrightarrow{QT} in terms of **p** and **q**, in its simplest form.

[2]

$$\mathbf{a} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$ Find $3\mathbf{a} - 2\mathbf{b}$. [2]