

# Vectors Difficulty: Easy

# **Question Paper 2**

| Level      | IGCSE                       |
|------------|-----------------------------|
| Subject    | Maths (0580/0980)           |
| Exam Board | CIE                         |
| Торіс      | Vectors and transformations |
| Sub-Topic  | Vectors                     |
| Paper      | Paper 2                     |
| Difficulty | Easy                        |
| Booklet    | Question Paper 2            |
|            |                             |

| Time allowed: | 37 minutes |  |  |
|---------------|------------|--|--|
| Score:        | /29        |  |  |
| Percentage:   | /100       |  |  |

## **Grade Boundaries:**

#### CIE IGCSE Maths (0580)

| A*   | А   | В   | С   | D   | Е   |
|------|-----|-----|-----|-----|-----|
| >88% | 76% | 63% | 51% | 40% | 30% |

### **CIE IGCSE Maths (0980)**

| 9    | 8   | 7   | 6   | 5   | 4   | 3   |  |
|------|-----|-----|-----|-----|-----|-----|--|
| >94% | 85% | 77% | 67% | 57% | 47% | 35% |  |







*O* is the origin and *OPQRST* is a regular hexagon.

$$\overrightarrow{OP} = \mathbf{p}$$
 and  $\overrightarrow{OT} = \mathbf{t}$ .

Find, in terms of  $\mathbf{p}$  and  $\mathbf{t}$ , in their simplest forms,

(a)  $\overrightarrow{PT}$ , [1]

(b)  $\overrightarrow{PR}$ ,

[2]

(c) the position vector of R.







*O* is the origin and *OPRQ* is a parallelogram. The position vectors of *P* and *Q* are p and q. *X* is on *PR* so that PX = 2XR.

Find, in terms of p and q, in their simplest forms

(a)  $, \overrightarrow{QX}$ 

(b) the position vector of *M*, the midpoint of *QX*.









(a) Work out the co-ordinates of the midpoint of AB.

(b) Write down the column vector  $\overrightarrow{AB}$ .

[1]

[1]







In the diagram, PQS, PMR, MXS and QXR are straight lines.

PQ = 2 QS.M is the midpoint of PR. QX : XR = 1 : 3.

$$P\dot{Q} = \mathbf{q}$$
 and  $P\dot{R} = \mathbf{r}$ .

(a) Find, in terms of q and r,

(i) 
$$\vec{RQ}$$
, [1]

(ii) 
$$\overrightarrow{MS}$$
. [1]

(b) By finding MX, show that X is the midpoint of MS. [3]





The position vector **r** is given by  $\mathbf{r} = 2\mathbf{p} + t(\mathbf{p} + \mathbf{q})$ .

(a) Complete the table below for the given values of *t*.Write each vector in its simplest form.One result has been done for you.

[3]

| t | 0 | 1 | 2                       | 3 |
|---|---|---|-------------------------|---|
| r |   |   | 4 <b>p</b> + 2 <b>q</b> |   |

- (b) O is the origin and  $\mathbf{p}$  and  $\mathbf{q}$  are shown on the diagram.
  - (i) Plot the 4 points given by the position vectors in the table.

[2]



(ii) What can you say about these four points?

[1]







In triangle *OGH*, the ratio GN : NH = 3 : 1.

$$\overrightarrow{OG} = \mathbf{g}$$
 and  $\overrightarrow{OH} = \mathbf{h}$ 

Find the following in terms of g and h, giving your answers in their simplest form.

(a) 
$$\overrightarrow{HG}$$
 [1]

(b)  $\overrightarrow{ON}$ 







*O* is the origin and *OPQR* is a parallelogram whose diagonals intersect at *M*. The vector  $\overrightarrow{OP}$  is represented by p and the vector  $\overrightarrow{OR}$  is represented by r.

(a) Write down a single vector which is represented by

(i) 
$$p + r$$
, [1]

(ii) 
$$\frac{1}{2}\mathbf{p} - \frac{1}{2}\mathbf{r}$$
. [1]

(b) On the diagram, mark with a cross (x) and label with the letter S the point with position vector

$$\frac{1}{2}\mathbf{p} + \frac{3}{4}\mathbf{r}.$$