

Vectors Difficulty: Hard

Question Paper 4

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Торіс	Vectors
Paper	Paper 4
Difficulty	Hard
Booklet	Question Paper 4

Time allowed:	87 minutes
Score:	/76
Percentage:	/100

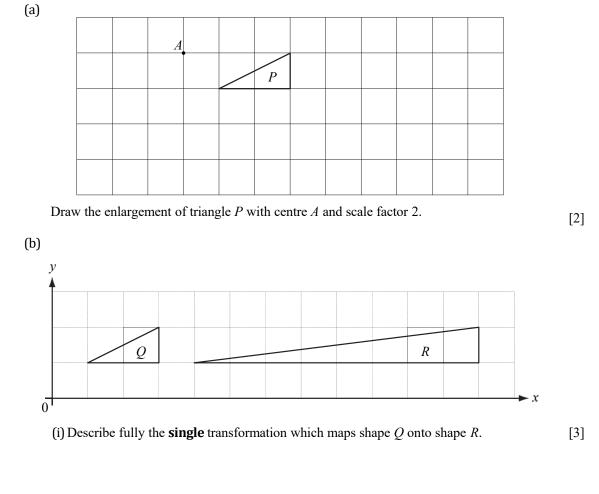
Grade Boundaries:

CIE IGCSE Maths (0580)

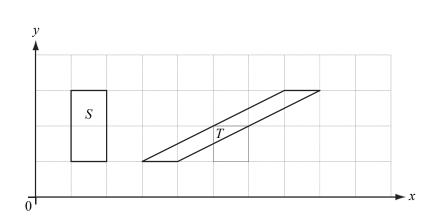
A*	А	В	С	D	
>83%	67%	51%	41%	31%	

CIE IGCSE Maths (0980)

9	8	7	6	5	4
>95%	87%	80%	69%	58%	46%

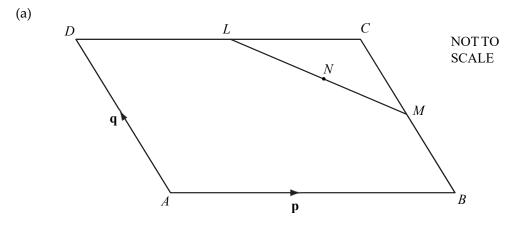


(ii) Find the matrix which represents this transformation.



Describe fully the **single** transformation which maps shape S onto shape T.

[3]



ABCD is a parallelogram. *L* is the midpoint of *DC*, *M* is the midpoint of *BC* and *N* is the midpoint of *LM*. $AB = \mathbf{p}$ and $\overline{AD} = \mathbf{q}$.

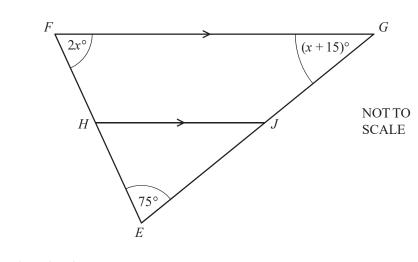
(i) Find the following in terms of **p** and **q**, in their simplest form.

(a)
$$\overrightarrow{AC}$$
 [1]

(b)
$$L\overline{M}$$
 [2]

(c)
$$\overrightarrow{AN}$$
 [2]

(ii) Explain why your answer for \overrightarrow{AN} shows that the point N lies on the line AC. [1]



EFG is a triangle. *HJ* is parallel to *FG*. Angle *FEG* = 75°. Angle *EFG* = $2x^{\circ}$ and angle *FGE* = $(x + 15)^{\circ}$.

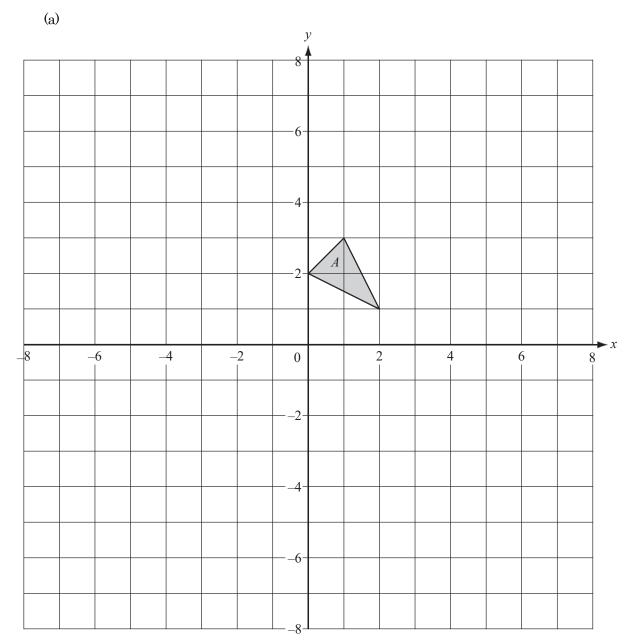
(i) Find the value of *x*.

(b)

[2]

(ii) Find angle HJG.

[1]



Draw the images of the following transformations on the grid above.

Label the image D.

- (i) Translation of triangle A by the vector $\begin{pmatrix} 3 \\ -7 \end{pmatrix}$. Label the image B. [2]
- (ii) Reflection of triangle *A* in the line x = 3. Label the image *C*.
 (iii) Rotation of triangle *A* through 90° anticlockwise around the point (0, 0).
- (iv) Enlargement of triangle *A* by scale factor –4, with centre (0, 1). Label the image *E*. [2]

[2]

(b) The area of triangle *E* is $k \times$ area of triangle *A*. Write down the value of *k*.

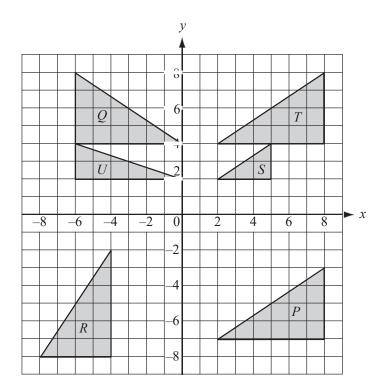
(c)

y 5 4 3 2 1 F х -3 -2 0 ż 3 5 -4 -1 4 1 -2 -3 -4 5

(i) Draw the image of triangle *F* under the transformation represented by the matrix $\mathbf{M} = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$. [3]

(ii) Describe fully this single transformation. [3]

(iii) Find \mathbf{M}^{-1} , the inverse of the matrix \mathbf{M} . [2]



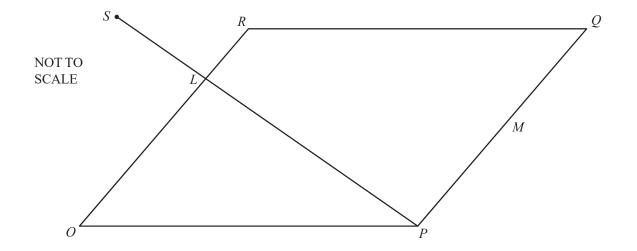
The diagram shows triangles P, Q, R, S, T and U.

(a) Describe fully the **single** transformation which maps triangle

(i) T onto P,	[2]
(ii) Q onto T ,	[2]
(iii) T onto R ,	[2]
(iv) T onto S ,	[3]
(v) U onto Q .	[3]

(b) Find the 2 by 2 matrix representing the transformation which maps triangle

(i) T onto R ,	[2]
(ii) U onto Q.	[2]



OPQR is a parallelogram. *O* is the origin. $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OR} = \mathbf{r}$. *M* is the mid-point of *PQ* and *L* is on *OR* such that *OL*: *LR* = 2:1. The line *PL* is extended to the point *S*.

(a) Find, in terms of **p** and **r**, in their simplest forms,

(i)
$$\overrightarrow{OQ}$$
, [1]

(ii)
$$\overrightarrow{PR}$$
, [1]

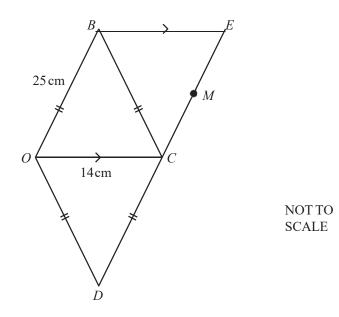
(iii)
$$\overrightarrow{PL}$$
, [1]

(iv) the position vector of M. [1]

(b) *PLS* is a straight line and *PS* = $\frac{3}{2}PL$.

Find, in terms of **p** and/or **r**, in their simplest forms,

- (i) \overrightarrow{PS} , [1]
- (ii) \overrightarrow{QS} . [2]
- (c) What can you say about the points Q, R and S? [1]



OBCD is a rhombus with sides of 25 cm. The length of the diagonal *OC* is 14 cm.

(a) Show, by calculation , that the length of the diagonal <i>BD</i> is 48 cm.	[3]
(b) Calculate, correct to the nearest degree,	
(i) angle <i>BCD</i> ,	[2]
(ii) angle OBC.	[1]
(c) $\overrightarrow{DB} = 2\mathbf{p}$ and $\overrightarrow{OC} = 2\mathbf{q}$. Find, in terms of \mathbf{p} and \mathbf{q} ,	
(i) \overrightarrow{OB} ,	[1]
(ii) \overrightarrow{OD} .	[1]
(d) <i>BE</i> is parallel to <i>OC</i> and <i>DCE</i> is a straight line. Find, in its simplest form, \overrightarrow{OE} in terms of p and q .	[2]
(e) <i>M</i> is the mid-point of <i>CE</i> .	
Find, in its simplest form, \overrightarrow{OM} in terms of p and q .	[2]
(f) <i>O</i> is the origin of a co-ordinate grid. <i>OC</i> lies along the <i>x</i> -axis and $\mathbf{q} = \begin{pmatrix} 7 \\ 0 \end{pmatrix}$.	
$(\overrightarrow{DB} \text{ is vertical and } \overrightarrow{DB} = 48.)$ Write down as column vectors	
(i) p ,	[1]
(ii) \overrightarrow{BC} .	[2]
(g) Write down the value of $ \overrightarrow{DE} $.	[1]