Vectors

Difficulty: Hard

Question Paper 4

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors
Paper	Paper 4
Difficulty	Hard
Booklet	Question Paper 4

Time allowed: $\quad 87$ minutes

Score: /76
Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	A	B	C	D
$>83 \%$	67%	51%	41%	31%

CIE IGCSE Maths (0980)

9	8	7	6	5	4
$>95 \%$	87%	80%	69%	58%	46%

(a)

Draw the enlargement of triangle P with centre A and scale factor 2 .
(b)

(i) Describe fully the single transformation which maps shape Q onto shape R.
(ii) Find the matrix which represents this transformation.
(c)

Describe fully the single transformation which maps shape S onto shape T.
(a)

$A B C D$ is a parallelogram.
L is the midpoint of $D C, M$ is the midpoint of $B C$ and N is the midpoint of $L M$. $A B=\mathbf{p}$ and $\overrightarrow{A D}=\mathbf{q}$.
(i) Find the following in terms of \mathbf{p} and \mathbf{q}, in their simplest form.
(a) $\overrightarrow{A C}$
(b) $L \vec{M}$
(c) $\overrightarrow{A N}$
(ii) Explain why your answer for $\overrightarrow{A N}$ shows that the point N lies on the line $A C$.
(b)

$E F G$ is a triangle.
$H J$ is parallel to $F G$.
Angle $F E G=75^{\circ}$.
Angle $E F G=2 x^{\circ}$ and angle $F G E=(x+15)^{\circ}$.
(i) Find the value of x.
(ii) Find angle $H J G$.

Question 3

(a)

Draw the images of the following transformations on the grid above.
(i) Translation of triangle A by the vector $\binom{3}{-7}$. Label the image B.
(ii) Reflection of triangle A in the line $x=3$. Label the image C.
(iii) Rotation of triangle A through 90° anticlockwise around the point $(0,0)$.

Label the image D.
(iv) Enlargement of triangle A by scale factor -4 , with centre $(0,1)$.

Label the image E.
(b) The area of triangle E is $k \times$ area of triangle A.

Write down the value of k.
(c)

(i) Draw the image of triangle F under the transformation represented by the $\operatorname{matrix} \mathbf{M}=\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right)$.
(ii) Describe fully this single transformation.
(iii) Find \mathbf{M}^{-1}, the inverse of the matrix \mathbf{M}.

The diagram shows triangles P, Q, R, S, T and U.
(a) Describe fully the single transformation which maps triangle
(i) T onto P,
(ii) Q onto T,
(iii) T onto R,
(iv) T onto S,
(v) U onto Q.
(b) Find the 2 by 2 matrix representing the transformation which maps triangle
(i) T onto R,
(ii) U onto Q.

$O P Q R$ is a parallelogram.
O is the origin.
$\overrightarrow{O P}=\mathbf{p}$ and $\overrightarrow{O R}=\mathbf{r}$.
M is the mid-point of $P Q$ and L is on $O R$ such that $O L: L R=2: 1$.
The line $P L$ is extended to the point S.
(a) Find, in terms of \mathbf{p} and \mathbf{r}, in their simplest forms,
(i) $\overrightarrow{O Q}$,
(ii) $\overrightarrow{P R}$,
(iii) $\overrightarrow{P L}$,
(iv) the position vector of M.
(b) $P L S$ is a straight line and $P S={ }_{2}^{3} P L$.

Find, in terms of \mathbf{p} and/or \mathbf{r}, in their simplest forms,
(i) $\overrightarrow{P S}$,
(ii) $\overrightarrow{Q S}$.
(c) What can you say about the points Q, R and S ?

NOT TO
SCALE
$O B C D$ is a rhombus with sides of 25 cm . The length of the diagonal $O C$ is 14 cm .
(a) Show, by calculation, that the length of the diagonal $B D$ is 48 cm .
(b) Calculate, correct to the nearest degree,
(i) angle $B C D$,
(ii) angle $O B C$.
(c) $\overrightarrow{D B}=2 \mathrm{p}$ and $\overrightarrow{O C}=2 \mathbf{q}$.

Find, in terms of \mathbf{p} and \mathbf{q},
(i) $\overrightarrow{O B}$,
(ii) $\overrightarrow{O D}$.
(d) $B E$ is parallel to $O C$ and $D C E$ is a straight line.

Find, in its simplest form, $\overrightarrow{O E}$ in terms of \mathbf{p} and \mathbf{q}.
(e) M is the mid-point of $C E$.

Find, in its simplest form, $\overrightarrow{O M}$ in terms of \mathbf{p} and \mathbf{q}.
(f) O is the origin of a co-ordinate grid. $O C$ lies along the x-axis and $\mathbf{q}=\binom{7}{0}$.
($\overrightarrow{D B}$ is vertical and $|\overrightarrow{D B}|=48$.)
Write down as column vectors
(i) p ,
(ii) $\overrightarrow{B C}$.
(g) Write down the value of $|\overrightarrow{D E}|$.

