Vectors

Difficulty: Hard

Question Paper 3

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors
Paper	Paper 4
Difficulty	Hard
Booklet	Question Paper 3

Time allowed: $\quad 106$ minutes

Score:

/92

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	A	B	C	D
$>83 \%$	67%	51%	41%	31%

CIE IGCSE Maths (0980)

9	8	7	6	5	4
$>95 \%$	87%	80%	69%	58%	46%

(a)

(i) Draw the reflection of triangle T in the line $y=5$.
(ii) Draw the rotation of triangle T about the point $(4,2)$ through 180°.
(iii) Describe fully the single transformation that maps triangle T onto triangle U.
(iv) Find the 2×2 matrix which represents the transformation in part (a)(iii).
(b)

In the pentagon $O P Q R S, O P$ is parallel to $R Q$ and $O S$ is parallel to $P Q$. $P Q=2 O S$ and $O P=2 R Q$.
O is the origin, $\overrightarrow{O P}=\mathbf{p}$ and $\overrightarrow{O S}=\mathbf{s}$.
Find, in terms of \mathbf{p} and \mathbf{s}, in their simplest form,
(i) the position vector of Q,
(ii) $\overrightarrow{S R}$.
(c) Explain what your answers in part (b) tell you about the lines $O Q$ and $S R$.

(a) Describe fully the single transformation that maps triangle A onto
(i) triangle B,
(ii) triangle C,
(iii) triangle D.
(b) On the grid, draw
(i) the rotation of triangle A about $(6,0)$ through 90° clockwise,
(ii) the enlargement of triangle A by scale factor -2 with centre $(0,-1)$,
(iii) the shear of triangle A by shear factor -2 with the y-axis invariant.
(c) Find the matrix that represents the transformation in part (b)(iii).
(a) The co-ordinates of P are $(-4,-4)$ and the co-ordinates of Q are $(8,14)$.
(i) Find the gradient of the line $P Q$.
(ii) Find the equation of the line $P Q$.
(iii) Write $\overrightarrow{P Q}$ as a column vector.
(iv) Find the magnitude of $\overrightarrow{P Q}$.
(b)

In the diagram, $\overrightarrow{O A}=4 \mathbf{a}$ and $\overrightarrow{O B}=3 \mathbf{b}$.
R lies on $A B$ such that $\overrightarrow{O R}=\frac{1}{5}(12 \mathbf{a}+6 \mathbf{b})$.
T is the point such that $\overrightarrow{B T}=\frac{3}{2} \overrightarrow{O A}$.
(i) Find the following in terms of \mathbf{a} and \mathbf{b}, giving each answer in its simplestform.
(a) $\overrightarrow{A B}$
(b) $\overrightarrow{A R}$
(c) $\overrightarrow{O T}$
(ii) Complete the following statement.

The points O, R and T are in a straight line because \qquad
(iii) Triangle $O A R$ and triangle $T B R$ are similar.

Find the value of $\frac{\text { area of triangle } T B R}{\text { area of triangle } O A R}$.
(a) $\mathbf{a}=\binom{-2}{3} \quad \mathbf{b}=\binom{2}{-7} \quad \mathbf{c}=\binom{-10}{21}$
(i) Find $2 a+b$.
(ii) Find $|\mathbf{b}|$.
(iii) $m \mathbf{a}+n \mathbf{b}=\mathbf{c}$

Find the values of m and n.
Show all your working.
(b)

NOT TO
SCALE

In the diagram, $O X: X P=3: 2$ and $O Y: Y Q=3: 2$.
$\overrightarrow{O P}=\mathbf{p}$ and $\overrightarrow{O Q}=\mathbf{q}$.
(i) Write $\overrightarrow{P Q}$ in terms of \mathbf{p} and \mathbf{q}.
(ii) Write $\overrightarrow{X Y}$ in terms of \mathbf{p} and \mathbf{q}.
(iii) Complete the following sentences.

The lines $X Y$ and $P Q$ are
The triangles $O X Y$ and $O P Q$ are
The ratio of the area of triangle $O X Y$ to the area of triangle $O P Q$ is

(a) Describe fully
(i) the single transformation which maps triangle P onto triangle Q,
(ii) the single transformation which maps triangle Q onto triangle R,
(iii) the single transformation which maps triangle R onto triangle P.
(b) On the grid, draw the image of
(i) triangle P after translation b. $\binom{-4}{-5}$,
(ii) triangle \boldsymbol{P} after reflection in the line $x=-1$.
(c) (i) On the grid, draw the image of triangle \boldsymbol{P} after a stretch, scale factor 2 and the y-axis as the invariant line.
(ii) Find the matrix which represents this stretch.
[2]
(a) P is the point $(2,5)$ and $\overrightarrow{P Q}=\binom{3}{-2}$.

Write down the co-ordinates of Q.
(b)

NOT TO
SCALE
O is the origin and $O A B C$ is a parallelogram.
M is the midpoint of $A B$.
$\overrightarrow{O C}=\mathbf{c}, \overrightarrow{O A}=3 \mathbf{a}$ and $C E=\frac{1}{3} C B$.
$O E D$ is a straight line with $O E: E D=2: 1$.

Find in terms of \mathbf{a} and \mathbf{c}, in their simplest forms
(i) $\overrightarrow{O B}$,
(ii) the position vector of M,
(iii) $\overrightarrow{O E}$,
(iv) $\overrightarrow{C D}$.
(c) Write down two facts about the lines $C D$ and $O B$.
(a)

The points P and Q have co-ordinates $(-3,1)$ and $(5,2)$.
(i) Write $\overrightarrow{P Q}$ as a column vector.
(ii) $\overrightarrow{Q R}=2\binom{-1}{1}$

Mark the point R on the grid.
(iii) Write down the position vector of the point P.
(b)

In the diagram, $\overrightarrow{O U}=\mathbf{u}$ and $\overrightarrow{O V}=\mathbf{v}$.
K is on $U V$ so that $\overrightarrow{U K}=\frac{2}{3} \overrightarrow{U V}$ and L is on $O U$ so that $\overrightarrow{O L}=\frac{3}{4} \overrightarrow{O U}$.
M is the midpoint of $K L$.
Find the following in terms of \mathbf{u} and \mathbf{v}, giving your answers in their simplest form.
(i) $\overrightarrow{L K}$
(ii) $\overrightarrow{O M}$

