Vectors

Difficulty: Medium

Question Paper 4

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors
Paper	Paper 4
Difficulty	Medium
Booklet	Question Paper 4

Time allowed:	92 minutes
Score:	$/ 80$
Percentage:	$/ 100$

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	A	B	C	D
$>83 \%$	67%	51%	41%	31%

CIE IGCSE Maths (0980)

9	8	7	6	5	4
$>95 \%$	87%	80%	69%	58%	46%

(a)

The points $A(5,3), B(1,-4)$ and $C(-4,-2)$ are shown in the diagram.
(i) Write $\overrightarrow{C A}$ as a column vector.
(ii) Find $\overrightarrow{C A}-\overrightarrow{C B}$ as a single column vector.
(iii) Complete the following statement.
(iv) Calculate $|\overrightarrow{C A}|$.
(b)

$A B C D$ is a trapezium with $D C$ parallel to $A B$ and $D C=\frac{1}{2} A B$.
M is the midpoint of $B C$.
$\overrightarrow{A D}=\mathrm{t}$ and $\overrightarrow{D C}=\mathrm{u}$.

Find the following vectors in terms of t and / or u .
Give each answer in its simplest form.
(i) $\overrightarrow{A B}$
(ii) $\overrightarrow{B M}$
(iii) $\overrightarrow{A M}$

(a) On the grid, draw the enlargement of the triangle T, centre $(0,0)$, scale factor $\frac{1}{2}$.
(b) The matrix $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ represents a transformation.
(i) Calculate the matrix product $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{lll}8 & 8 & 2 \\ 4 & 8 & 8\end{array}\right)$.
(ii) On the grid, draw the image of the triangle T under this transformation.
(iii) Describe fully this single transformation.
(c) Describe fully the single transformation which maps
(i) triangle T onto triangle P,
(ii) triangle T onto triangle Q.
(a) $\mathbf{p}=\binom{3}{2}$ and $\mathbf{q}=\binom{6}{3}$.
(i) Find, as a single column vector, $\mathbf{p}+2 \mathbf{q}$.
(ii) Calculate the value of $|\mathbf{p}+2 \mathbf{q}|$.
(b)

In the diagram, $C M=M V$ and $O L=2 L V$.
O is the origin. $\overrightarrow{O C}=\mathrm{c}$ and $\overrightarrow{O V}=\mathrm{v}$.
Find, in terms of c and v, in their simplest forms
(i) $\overrightarrow{C M}$,
(ii) the position vector of M,
(iii) $\overrightarrow{M L}$.

(a) On the grid, draw
(i) the translation of triangle T by the vector $\binom{-7}{3}$,
(ii) the rotation of triangle T about $(0,0)$, through 90° clockwise.
(b) Describe fully the single transformation that maps
(i) triangle T onto triangle U,
(ii) triangle T onto triangle V.
(c) Find the 2 by 2 matrix which represents the transformation that maps
(i) triangle T onto triangle U,
(ii) triangle T onto triangle V,

(a) Draw the reflection of triangle T in the line $y=6$.

Label the image A.
(b) Draw the translation of triangle T by the vector $\binom{-4}{6}$.

Label the image B.
(c) Describe fully the single transformation which maps triangle B onto triangle T.
(d) (i) Describe fully the single transformation which maps triangle T onto triangle P.
(e) (i) Describe fully the single transformation which maps triangle T onto triangle Q.
(ii) Find the 2 by 2 matrix which represents the transformation mapping triangle T onto triangle Q.

Question 6

(a) Describe fully the single transformation which maps
(i) triangle T onto triangle U,
(ii) triangle T onto triangle V,
(iii) triangle T onto triangle W,
(iv) triangle U onto triangle X.
(b) Find the matrix representing the transformation which maps
(i) triangle U onto triangle V,
(ii) triangle U onto triangle X.

