

Trigonometry Difficulty: Hard

Question Paper 1

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Торіс	Trigonometry
Paper	Paper 4
Difficulty	Hard
Booklet	Question Paper 1

Time allowed:	101 minutes		
Score:	/88		
Percentage:	/100		

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	А	В	С	D
>83%	67%	51%	41%	31%

CIE IGCSE Maths (0980)

9	8	7	6	5	4
>95%	87%	80%	69%	58%	46%

The diagram shows a quadrilateral *ABCD*.

(a) The length of AC is x cm.

Use the cosine rule in triangle *ABC* to show that $2x^2 - 17x - 168 = 0.$ [4]

(b) Solve the equation $2x^2 - 17x - 168 = 0$.	
Show all your working and give your answers correct to 2 decimal places.	[4]

(c) Use the sine rule to calculate the length of <i>CD</i> .	[3]
--	-----

The diagram shows a field *ABCD*.

(a) Calculate the area of the field *ABCD*.

[3]

(b) Calculate the perimeter of the field *ABCD*.

[5]

(c) Calculate the shortest distance from *A* to *CD*.

[2]

(d) B is due north of A.

Find the bearing of C from B.

[3]

The diagram shows five straight footpaths in a park. AB = 220 m, AC = 180 m and AD = 170 m.Angle $ACB = 90^{\circ}$ and angle $DAC = 33^{\circ}.$

(a) Calculate BC.

[3]

(b) Calculate CD.

[4]

(c) Calculate the shortest distance from D to AC.

[2]

(d) The bearing of D from A is 047°.

Calculate the bearing of B from A.

(e) Calculate the area of the quadrilateral *ABCD*.

[3]

[3]

The diagram shows a field, *ABCD*. AD = 180 m and AC = 240 m. Angle $ABC = 50^{\circ}$ and angle $ACB = 85^{\circ}$.

(a) Use the sine rule to calculate *AB*.

[3]

(b) The area of triangle $ACD = 12\ 000\ m^2$.

Show that angle $CAD = 33.75^{\circ}$, correct to 2 decimal places. [3]

(c) Calculate BD.

[5]

(d)	The bearing	of D from .	<i>A</i> is 030°.
-----	-------------	---------------	-------------------

Find the bearing of

(i) B from A ,	Ľ	1	
--------------------	---	---	--

(ii) A from B.

[2]

A plane flies from A to C and then from C to B. AC = 510 km and CB = 720 km. The bearing of C from A is 135° and angle $ACB = 40^\circ$.

(a) Find the bearing of

(i)
$$B$$
 from C , [2]

(ii)
$$C \text{ from } B.$$
 [2]

(b) Calculate *AB* and show that it rounds to 464.7 km, correct to 1 decimal place. [4]

(c) Calculate angle *ABC*.

[3]

In the triangle *PQR*, QR = 7.6 cm and PR = 8.4 cm. Angle $QRP = 62^{\circ}$.

Calculate

(i) *PQ*,

[4]

(ii) the area of triangle PQR.

[2]

The diagram shows the positions of three small islands G, H and J. The bearing of H from G is 045°. The bearing of J from G is 126°. The bearing of J from H is 164°. The distance HJ is 63 km.

Calculate the distance GJ.

[5]

The diagram shows the positions of two ships, A and B, and a coastguard station, C.

(a) Calculate the distance, *AB*, between the two ships. Show that it rounds to 138km, correct to the nearest kilometre.

[4]

(b) The bearing of the coastguard station C from ship A is 146° .

Calculate the bearing of ship *B* from ship *A*.

[4]

At noon, a lighthouse, *L*, is 46.2km from ship *B* on the bearing 021° . Ship *B* sails north west.

Calculate the distance ship *B* must sail from its position at noon to be at its closest distance to the lighthouse.

[2]

