Trigonometry Difficulty: Hard

Question Paper 1

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Trigonometry
Paper	Paper 4
Difficulty	Hard
Booklet	Question Paper 1

Time allowed:
Score:
Percentage:
/100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	A	B	C	D
$>83 \%$	67%	51%	41%	31%

CIE IGCSE Maths (0980)

9	8	7	6	5	4
$>95 \%$	87%	80%	69%	58%	46%

NOT TO
SCALE

The diagram shows a quadrilateral $A B C D$.
(a) The length of $A C$ is $x \mathrm{~cm}$.

Use the cosine rule in triangle $A B C$ to show that $2 x^{2}-17 x-168=0$.
(b) Solve the equation $2 x^{2}-17 x-168=0$.

Show all your working and give your answers correct to 2 decimal places.
(c) Use the sine rule to calculate the length of $C D$.
(d) Calculate the area of the quadrilateral $A B C D$.

NOT TO
SCALE

The diagram shows a field $A B C D$.
(a) Calculate the area of the field $A B C D$.
(b) Calculate the perimeter of the field $A B C D$.
(c) Calculate the shortest distance from A to $C D$.
(d) B is due north of A.

Find the bearing of C from B.

The diagram shows five straight footpaths in a park.
$A B=220 \mathrm{~m}, A C=180 \mathrm{~m}$ and $A D=170 \mathrm{~m}$.
Angle $A C B=90^{\circ}$ and angle $D A C=33^{\circ}$.
(a) Calculate $B C$.
(b) Calculate $C D$.
(c) Calculate the shortest distance from D to $A C$.
(d) The bearing of D from A is 047°.

$$
\text { Calculate the bearing of } B \text { from } A \text {. }
$$

(e) Calculate the area of the quadrilateral $A B C D$.

The diagram shows a field, $A B C D$.
$A D=180 \mathrm{~m}$ and $A C=240 \mathrm{~m}$.
Angle $A B C=50^{\circ}$ and angle $A C B=85^{\circ}$.
(a) Use the sine rule to calculate $A B$.
(b) The area of triangle $A C D=12000 \mathrm{~m}^{2}$.

Show that angle $C A D=33.75^{\circ}$, correct to 2 decimal places.
(c) Calculate $B D$.
(d) The bearing of D from A is 030°.

Find the bearing of
(i) B from A,
(ii) A from B.

NOT TO

A plane flies from A to C and then from C to B.
$A C=510 \mathrm{~km}$ and $C B=720 \mathrm{~km}$.
The bearing of C from A is 135° and angle $A C B=40^{\circ}$.
(a) Find the bearing of
(i) B from C,
(ii) C from B.
(b) Calculate $A B$ and show that it rounds to 464.7 km , correct to 1 decimal place.
(c) Calculate angle $A B C$.
(a)

In the triangle $P Q R, Q R=7.6 \mathrm{~cm}$ and $P R=8.4 \mathrm{~cm}$.
Angle $Q R P=62^{\circ}$.
Calculate
(i) $P Q$,
(ii) the area of triangle $P Q R$.
(b)

The diagram shows the positions of three small islands G, H and J.
The bearing of H from G is 045°.
The bearing of J from G is 126°.
The bearing of J from H is 164°.
The distance $H J$ is 63 km .
Calculate the distance $G J$.

The diagram shows the positions of two ships, A and B, and a coastguard station, C.

NOT TO SCALE
(a) Calculate the distance, $A B$, between the two ships.

Show that it rounds to 138 km , correct to the nearest kilometre.
(b) The bearing of the coastguard station C from ship A is 146°.

Calculate the bearing of $\operatorname{ship} B$ from ship A.
(c)

At noon, a lighthouse, L, is 46.2 km from ship B on the bearing 021°.
Ship B sails north west.
Calculate the distance ship B must sail from its position at noon to be at its closest distance to the lighthouse.

