Trigonometry Difficulty: Medium

Question Paper 3

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Trigonometry
Paper	Paper 4
Difficulty	Medium
Booklet	Question Paper 3

Time allowed: $\quad 91$ minutes

Score: /79
Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	A	B	C	D
$>83 \%$	67%	51%	41%	31%

CIE IGCSE Maths (0980)

9	8	7	6	5	4
$>95 \%$	87%	80%	69%	58%	46%

$A B C D$ is a quadrilateral and $B D$ is a diagonal.
$A B=26 \mathrm{~cm}, B D=24 \mathrm{~cm}$, angle $A B D=40^{\circ}$, angle $C B D=40^{\circ}$ and angle $C D B=30^{\circ}$.
(a) Calculate the area of triangle $A B D$.
(b) Calculate the length of $A D$.
(c) Calculate the length of $B C$.

The diagram shows some straight line distances between Auckland (A), Hamilton (H), Tauranga (T) and Rotorua (R).
$A T=180 \mathrm{~km}, A H=115 \mathrm{~km}$ and $H T=90 \mathrm{~km}$.
(a) Calculate angle HAT.

Show that this rounds to 25.0°, correct to 3 significant figures.
(b) The bearing of H from A is 150°.

Find the bearing of
(i) T from A,
(ii) A from T.
(c) Calculate how far T is east of A.
(d) Angle $T H R=30^{\circ}$ and angle $H R T=70^{\circ}$.

Calculate the distance $T R$.
(e) On a map the distance representing $H T$ is 4.5 cm .

The scale of the map is $1: n$.
Calculate the value of n.

The diagram above shows the net of a pyramid.

The base $A B C D$ is a rectangle 8 cm by 6 cm .

All the sloping edges of the pyramid are of length 7 cm .
M is the mid-point of $A B$ and N is the mid-point of $B C$.
(a) Calculate the length of
(i) $Q M$,
(ii) $R N$.
(b) Calculate the surface area of thepyramid.
(c)

The net is made into a pyramid, with P, Q, R and S meeting at P.
The mid-point of $C D$ is G and the mid-point of $D A$ is H.
The diagonals of the rectangle $A B C D$ meet at X.
(i) Show that the height, $P X$, of the pyramid is 4.90 cm , correct to 2 decimal places.
(ii) Calculate angle $P N X$.
(iii) Calculate angle $H P N$.
(iv) Calculate the angle between the edge $P A$ and the base $A B C D$.
(v) Write down the vertices of a triangle which is a plane of symmetry of the pyramid.

NOT TO
SCALE

The diagram shows a pyramid on a horizontal rectangular base $A B C D$. The diagonals of $A B C D$ meet at E.
P is vertically above E.
$A B=8 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $P C=13 \mathrm{~cm}$.
(a) Calculate $P E$, the height of the pyramid.
(b) Calculate the volume of thepyramid.
[The volume of a pyramid is given by $\frac{1}{3} \times$ area of base \times height.]
(c) Calculate angle $P C A$.
(d) M is the mid-point of $A D$ and N is the mid-point of $B C$.

Calculate angle MPN.
(e) (i) Calculate angle $P B C$.
(ii) K lies on $P B$ so that $B K=4 \mathrm{~cm}$.

Calculate the length of $K C$.

NOT TO
SCALE

The diagram shows a pyramid on a rectangular base $A B C D$, with $A B=6 \mathrm{~cm}$ and $A D=5 \mathrm{~cm}$. The diagonals $A C$ and $B D$ intersect at F.
The vertical height $F P=3 \mathrm{~cm}$.
(a) How many planes of symmetry does the pyramid have?
(b) Calculate the volume of the pyramid.
[The volume of a pyramid is $\frac{1}{3} \times$ area of base \times height.]
(c) The mid-point of $B C$ is M.

Calculate the angle between $P M$ and the base.
(d) Calculate the angle between $P B$ and the base.
(e) Calculate the length of $P B$.

Felipe (F) stands 17 metres from a bridge (B) and 32 metres from a tree (T). The points F, B and T are on level ground and angle $B F T \# 40^{\circ}$.
(a) Calculate
(i) the distance $B T$,
(ii) the angle $B T F$.
(b) The bearing of B from F is 085°. Find the bearing of
(i) T from F,
(ii) F from T,
(iii) B from T.
(c) The top of the tree is 30 metres vertically above T.

Calculate the angle of elevation of the top of the tree from F.

