

Trigonometry Difficulty: Medium

Question Paper 2

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Торіс	Trigonometry
Paper	Paper 4
Difficulty	Medium
Booklet	Question Paper 2

Time allowed:	93 minutes	
Score:	/81	
Percentage:	/100	

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	А	В	С	D
>83%	67%	51%	41%	31%

CIE IGCSE Maths (0980)

9	8	7	6	5	4
>95%	87%	80%	69%	58%	46%

A ship sails from port *P* to port *Q*. *Q* is 74 km from *P* on a bearing of 142° . A lighthouse, *L*, is 58 km from *P* on a bearing of 110° .

(a) Show that the distance LQ is 39.5km correct to 1 decimal place.

(b) Use the sine rule to calculate angle *PQL*.

[5]

(c) Find the bearing of

(i) P from Q ,	[2]
(ii) <i>L</i> from <i>Q</i> .	[1]

(d) The ship takes 2 hours and 15 minutes to sail the 74 km from P to Q.

Calculate the average speed in knots.	
[1 knot = 1.85 km/h]	[3]

(e) Calculate the shortest distance from the lighthouse to the path of the ship. [3]

The diagram shows the cross section, *ABCD*, of a ramp.

(a) Calculate angle *DBC*.

[2]

[2]

(b) (i) Show that *BD* is exactly 3 m.

(ii) Use the cosine rule to calculate angle *ABD*. [4]

(c) The ramp is a prism of width 4 m.[3] Calculate the volume of this prism.

A field, *ABCD*, is in the shape of a quadrilateral. A footpath crosses the field from *A* to *C*.

(a) Use the sine rule to calculate the *a*distance AC and show that it rounds to 119.9 m, to 1 decimal place.
 [3]

(b) Calculate the length of *BC*.

[4]

(c) Calculate the area of triangle *ACD*.

[2]

(d) The field is for sale at \$4.50 per square metre.

Calculate the cost of the field.

[3]

The diagram shows triangle *LMN* with LM = 12 cm, LN = 15 cm and MN = 21 cm.

(i) Calculate angle *LMN*.

Show that this rounds to 44.4°, correct to 1 decimal place.

[4]

(ii) Calculate the area of triangleLMN.

[2]

The diagram shows triangle PQR with PQ = 6.4 cm, angle $PQR = 82^{\circ}$ and angle $QPR = 43^{\circ}$. Calculate the length of *PR*.

[4]

(b)

Question 5

The diagram represents a field in the shape of a quadrilateral *ABCD*. AB = 32 m, BC = 43 m and AC = 64 m.

(a) (i) Show clearly that angle $CAB = 37.0^{\circ}$ correct to one decimal place.

(ii) Calculate the area of the triangle ABC.

(b) CD = 70 m and angle $DAC = 55^{\circ}$.

Calculate the perimeter of the whole field ABCD.

[6]

[2]

[4]

The diagram shows a triangular prism of length 12 cm.

The rectangle *ABCD* is horizontal and the rectangle *DCPQ* is vertical.

The cross-section is triangle *PBC* in which angle $BCP = 90^{\circ}$, BC = 4 cm and CP = 3 cm. (a) (i) Calculate the length of *AP*.

(ii) Calculate the angle of elevation of P from A.

[2]

(b) (i) Calculate angle *PBC*.

[2]

(ii) X is on BP so that angle $BXC = 120^{\circ}$.

Calculate the length of *XC*.

[3]

The diagram shows a box ABCDEFGH in the shape of a cuboid measuring 2 m by 1.5 m by 1.7 m.(a) Calculate the length of the diagonal EC.[4]

(b) Calculate the angle between *EC* and the base *EFGH*.

(c) (i) A rod has length 2.9 m, correct to 1 decimal place.
What is the upper bound for the length of the rod? [1]
(ii) Will the rod fit completely in the box?
Give a reason for your answer. [1]

[3]

