Trigonometry Difficulty: Medium

Question Paper 2

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Trigonometry
Paper	Paper 4
Difficulty	Medium
Booklet	Question Paper 2

Time allowed: 93 minutes

Score:

/81

Percentage:
/100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	A	B	C	D
$>83 \%$	67%	51%	41%	31%

CIE IGCSE Maths (0980)

9	8	7	6	5	4
$>95 \%$	87%	80%	69%	58%	46%

A ship sails from port P to port Q.
Q is 74 km from P on a bearing of 142°.
A lighthouse, L, is 58 km from P on a bearing of 110°.
(a) Show that the distance $L Q$ is 39.5 km correct to 1 decimal place.
(b) Use the sine rule to calculate angle $P Q L$.
(c) Find the bearing of

$$
\begin{equation*}
\text { (i) } P \text { from } Q \tag{2}
\end{equation*}
$$

(ii) L from Q.
(d) The ship takes 2 hours and 15 minutes to sail the 74 km from P to Q.

Calculate the average speed in knots.
[$1 \mathrm{knot}=1.85 \mathrm{~km} / \mathrm{h}$]
[3]
(e) Calculate the shortest distance from the lighthouse to the path of the ship.

The diagram shows the cross section, $A B C D$, of a ramp.
(a) Calculate angle $D B C$.
(b) (i) Show that $B D$ is exactly 3 m .
(ii) Use the cosine rule to calculate angle $A B D$.
(c) The ramp is a prism of width 4 m .

Calculate the volume of this prism.

A field, $A B C D$, is in the shape of a quadrilateral.
A footpath crosses the field from A to C.

(a) Use the sine rule to calculate the adistarace $A C$ and show that it rounds to 119.9 m , to 1 decimal place.
(b) Calculate the length of $B C$.
(c) Calculate the area of triangle $A C D$.
(d) The field is for sale at $\$ 4.50$ per square metre.

Calculate the cost of the field.
(a)

The diagram shows triangle $L M N$ with $L M=12 \mathrm{~cm}, L N=15 \mathrm{~cm}$ and $M N=21 \mathrm{~cm}$.
(i) Calculate angle $L M N$.

Show that this rounds to 44.4°, correct to 1 decimal place.
(b)

The diagram shows triangle $P Q R$ with $P Q=6.4 \mathrm{~cm}$, angle $P Q R=82^{\circ}$ and angle $Q P R=43^{\circ}$. Calculate the length of $P R$.

The diagram represents a field in the shape of a quadrilateral $A B C D$. $A B=32 \mathrm{~m}, B C=43 \mathrm{~m}$ and $A C=64 \mathrm{~m}$.
(a) (i) Show clearly that angle $C A B=37.0^{\circ}$ correct to one decimal place.
(ii) Calculate the area of the triangle $A B C$.
(b) $C D=70 \mathrm{~m}$ and angle $D A C=55^{\circ}$.

The diagram shows a triangular prism of length 12 cm .
The rectangle $A B C D$ is horizontal and the rectangle $D C P Q$ is vertical.
The cross-section is triangle $P B C$ in which angle $B C P=90^{\circ}, B C=4 \mathrm{~cm}$ and $C P=3 \mathrm{~cm}$.
(a) (i) Calculate the length of $A P$.
(ii) Calculate the angle of elevation of P from A.
(b) (i) Calculate angle $P B C$.
(ii) X is on $B P$ so that angle $B X C=120^{\circ}$.

Calculate the length of $X C$.

The diagram shows a box $A B C D E F G H$ in the shape of a cuboid measuring 2 m by 1.5 m by 1.7 m .
(a) Calculate the length of the diagonal $E C$.
(b) Calculate the angle between $E C$ and the base $E F G H$.
(c) (i) A rod has length 2.9 m , correct to 1 decimal place.

What is the upper bound for the length of the rod?
(ii) Will the rod fit completely in the box?

Give a reason for your answer.

