Perimeters, Area and Volumes Difficulty: Medium

Question Paper 3

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Perimeters, Area and Volumes
Paper	Paper 4
Difficulty	Medium
Booklet	Question Paper 3

Time allowed:	105 minutes
Score:	$/ 91$
Percentage:	$/ 100$

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	A	B	C	D
$>83 \%$	67%	51%	41%	31%

CIE IGCSE Maths (0980)

9	8	7	6	5	4
$>95 \%$	87%	80%	69%	58%	46%

The diagram shows two solid spheres of radius 3 cm lying on the base of a cylinder of radius 8 cm .
Liquid is poured into the cylinder until the spheres are just covered.
[The volume, V, of a sphere with radius r is $V=\frac{4}{3} \pi r^{3}$.]
(a) Calculate the volume of liquid in the cylinder in
(i) cm^{3},
[4]
(ii) litres.
(b) One cubic centimetre of the liquid has a mass of 1.22 grams.

Calculate the mass of the liquid in the cylinder.
Give your answer in kilograms.
(c) The spheres are removed from the cylinder.

Calculate the new height of the liquid in the cylinder.

NOT TO
SCALE

The diagram shows a plastic cup in the shape of a cone with the end removed.
The vertical height of the cone in the diagram is 20 cm .
The height of the cup is 8 cm .
The base of the cup has radius 2.7 cm .
(a) (i) Show that the radius, r, of the circular top of the cup is 4.5 cm .
(ii) Calculate the volume of water in the cup when it is full.
[The volume, V, of a cone with radius r and height h is $V=\frac{1}{3} \pi r^{2} h$.]
(b) (i) Show that the slant height, s, of the cup is 8.2 cm .
(ii) Calculate the curved surface area of the outside of the cup.
[The curved surface area, A, of a cone with radius r and slant height l is $A=\pi r l$.]

A solid cone has diameter 9 cm , slant height 10 cm and vertical height $h \mathrm{~cm}$.
(a) (i) Calculate the curved surface area of the cone. [The curved surface area, A, of a cone, radius r and slant height l is $A=\pi r l$.]
(ii) Calculate the value of h, the vertical height of the cone.
(b)

NOT TO
SCALE

Sasha cuts off the top of the cone, making a smaller cone with diameter 3 cm . This cone is similar to the original cone.
(i) Calculate the vertical height of this small cone.
(ii) Calculate the curved surface area of this small cone.
(c)

The shaded solid from part (b) is joined to a solid cylinder with diameter 9 cm and height 12 cm .
Calculate the total surface area of the whole solid.

A rectangular tank measures 1.2 m by 0.8 m by 0.5 m .
(a) Water flows from the full tank into a cylinder at a rate of $0.3 \mathrm{~m} / \mathrm{min}$.

Calculate the time it takes for the full tank to empty.
Give your answer in minutes and seconds.
(b) The radius of the cylinder is 0.4 m .

Calculate the depth of water, d, when all the water from the rectangular tank is in the cylinder.
(c) The cylinder has a height of 1.2 m and is open at the top. The inside surface is painted at a cost of $\$ 2.30$ per m^{2}.

Calculate the cost of painting the inside surface.

In the diagram, $A B C D E F$ is a prism of length 36 cm .
The cross-section $A B C$ is a right-angled triangle.
$A B=19 \mathrm{~cm}$ and $A C=14 \mathrm{~cm}$.
Calculate
(a) the length $B C$,
(b) the total surface area of the prism,
(c) the volume of the prism,
(d) the length $C E$,
(e) the angle between the line $C E$ and the base $A B E D$.
(a)

A solid pyramid has a regular hexagon of side 2.5 cm as its base.
Each sloping face is an isosceles triangle with base 2.5 cm and height 9.5 cm .
Calculate the total surface area of the pyramid.
(b)

A sector $O A B$ has an angle of 55° and a radius of 15 cm .
Calculate the area of the sector and show that it rounds to $108 \mathrm{~cm}^{2}$, correct to 3 significant figures.
(c)

The sector radii $O A$ and $O B$ in part (b) are joined to form a cone.
(i) Calculate the base radius of the cone.
[The curved surface area, A, of a cone with radius r and slant height l is $A=\pi r l$.]
(ii) Calculate the perpendicular height of the cone.
(d)

NOT TO
SCALE

A solid cone has the same dimensions as the cone in part (c).
A small cone with slant height 7.5 cm is removed by cutting parallel to the base.
Calculate the volume of the remaining solid.
[The volume, V, of a cone with radius r and height h is $V=\frac{1}{3} \pi r^{2} h$.]

An open water storage tank is in the shape of a cylinder on top of a cone.
The radius of both the cylinder and the cone is 1.5 m .
The height of the cylinder is 4 m and the height of the cone is 2 m .
(a) Calculate the total surface area of the outside of the tank.
[The curved surface area, A, of a cone with radius r and slant height l is $A=\pi r l$.]
(b) The tank is completely full of water.
(i) Calculate the volume of water in the tank and show that it rounds to $33 \mathrm{~m}^{3}$, correct to the nearest whole number.
[The volume, V, of a cone with radius r and height h is $V=\frac{1}{3} \pi r^{2} h$.]
(ii)

The cross-section of an irrigation channel is a semi-circle of radius 0.5 m . The $33 \mathrm{~m}^{3}$ of water from the tank completely fills the irrigation channel.

Calculate the length of the channel.
(c) (i) Calculate the number of litres in a full tank of $33 \mathrm{~m}^{3}$.
(ii) The water drains from the tank at a rate of 1800 litres per minute.

Calculate the time, in minutes and seconds, taken to empty the tank.

