Geometry Difficulty: Hard

Question Paper 2

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Geometry
Paper	Paper 4
Difficulty	Hard
Booklet	Question Paper 2

Time allowed: $\quad 100$ minutes
Score: /87
Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	A	B	C	D
$>83 \%$	67%	51%	41%	31%

CIE IGCSE Maths (0980)

9	8	7	6	5	4
$>95 \%$	87%	80%	69%	58%	46%

(a)

NOT TO
SCALE

In the pentagon $A B C D E$, angle $E A B=$ angle $A B C=110^{\circ}$ and angle $C D E=84^{\circ}$. Angle $B C D=$ angle $D E A=x^{\circ}$.
(i) Calculate the value of x.
(ii) $B C=C D$.

Calculate angle $C B D$.
(iii) This pentagon also has one line of symmetry. Calculate angle $A D B$.
(b) A, B and C lie on a circle centre O.

Angle $A O C=3 y^{\circ}$ and angle $A B C=(4 y+4)^{\circ}$.

Find the value of y.

(c)

NOT TO
SCALE

In the cyclic quadrilateral $P Q R S$, angle $S P Q=78^{\circ}$.
(i) Write down the geometrical reason why angle $Q R S=102^{\circ}$.
(ii) Angle $P R Q$: Angle $P R S=1: 2$.

Calculate angle $P Q S$.
(d)

NOT TO
SCALE

The diagram shows two similar figures.
The areas of the figures are $5 \mathrm{~cm}^{2}$ and $7.2 \mathrm{~cm}^{2}$.
The lengths of the bases are $l \mathrm{~cm}$ and 6.9 cm .
Calculate the value of l.
(a)

NOT TO
SCALE
A, B, C, D, E and F are points on the circumference of a circle centre O.
$A E$ is a diameter of the circle.
$B C$ is parallel to $A E$ and angle $C A E=42^{\circ}$.
Giving a reason for each answer, find
(i) angle $B C A$,
(ii) angle $A C E$,
(iii) angle $C F E$,
(iv) angle $C D E$.
(b)

In the diagram, O is the centre of the circle and $P Q$ is a tangent to the circle at P.
$O P=5 \mathrm{~cm}$ and $O Q=12 \mathrm{~cm}$.
Calculate $P Q$.
(c)

NOT TO SCALE

In the diagram, $A B C D$ and $D E F G$ are squares.
(i) In the triangles $C D G$ and $A D E$, explain with a reason which sides and/or angles are equal.
(ii) Complete the following statement.
(a)

NOT TO SCALE
A, B, C, D and E lie on the circle, centre O.
$C A$ and $B D$ intersect at Y.
Angle $D C A=88^{\circ}$ and angle $C Y D=68^{\circ}$.
Angle $B A C=u^{\circ}$, angle $A E D=v^{\circ}$ and reflex angle $A O D=w^{\circ}$.
Calculate the values of u, v and w.
(b)

P, Q, R and S lie on the circle. $P R$ and $Q S$ intersect at X.
The area of triangle $R S X=1.2 \mathrm{~cm}^{2}$ and $P X=3 S X$.
Calculate the area of triangle $P Q X$.
(c)

NOT TO
SCALE
$G I$ is a diameter of the circle.
$F G H$ is a tangent to the circle at G.
J and K also lie on the circle.
Angle $J G I=x^{\circ}$, angle $F G J=4 x^{\circ}$ and angle $K G I=2 x^{\circ}$.

Find
(i) the value of x,
(ii) the size of angle $J K G$,
(iii) the size of angle GJK.
(a)

$A B C D$ is a quadrilateral with angle $B A D=40^{\circ}$.
$A B$ is extended to E and angle $E B C=30^{\circ}$.
$A B=A D$ and $B D=B C$.
(i) Calculate angle $B C D$.
(ii) Give a reason why $D C$ is not parallel to $A E$.
(b) A regular polygon has n sides.

Each exterior angle is $\frac{5 n}{2}$ degrees.
Find the value of n.
(c)

The diagram shows a circle centre O.
A, B and C are points on the circumference.
$O C$ is parallel to $A B$.
Angle $O C A=25^{\circ}$.
Calculate angle $O B C$.
(a)

The lines $A B$ and $C D E$ are parallel.
$A D$ and $C B$ intersect at X.
$A B=9 \mathrm{~cm}, C D=6 \mathrm{~cm}$ and $D X=3 \mathrm{~cm}$.
(i) Complete the following statement.

Triangle $A B X$ is \qquad to triangle $D C X$.
(ii) Calculate the length of $A X$.
(iii) The area of triangle $D C X$ is $6 \mathrm{~cm}^{2}$.

Calculate the area of triangle $A B X$.
(iv) Angle $B A X=x^{\circ}$ and angle $A B X=y^{\circ}$.

Find angle $A X B$ and angle $X D E$ in terms of x and/or y.
(b)

P, Q, R and S lie on a circle, centre O.
Angle $O P S=42^{\circ}$ and angle $P R Q=35^{\circ}$.

Calculate

(i) angle $P O S$,
(ii) angle $P R S$,
(iii) angle $S P Q$,
(iv) angle $P S Q$.
(c) The interior angle of a regular polygon is 8 times as large as the exterior angle.

Calculate the number of sides of the polygon.
(a)

The diagram shows two triangles $A C B$ and $A P Q$.
Angle $P A Q=$ angle $B A C$ and angle $A Q P=$ angle $A B C$.
$A B=4 \mathrm{~cm}, B C=3.6 \mathrm{~cm}$ and $A Q=3 \mathrm{~cm}$.
(i) Complete the following statement.

Triangle $A C B$ is \qquad to triangle $A P Q$.
(ii) Calculate the length of $P Q$.
(iii) The area of triangle $A C B$ is $5.6 \mathrm{~cm}^{2}$.

Calculate the area of triangle $A P Q$.
(b)

R, H, S, T and U lie on a circle, centre O.
$H T$ is a diameter and $M N$ is a tangent to the circle at T.
Angle $R T M=61^{\circ}$.
Find
(i) angle RTH ,
(ii) angle $R H T$,
(iii) angle $R S T$,
(iv) angle $R U T$.
(c) $A B C D E F$ is a hexagon.

The interior angle B is 4° greater than interior angle A.
The interior angle C is 4° greater than interior angle B, and so on, with each of the next interior angles 4° greater than the previous one.
(i) By how many degrees is interior angle F greater than interior angle A ?
(ii) Calculate interior angle A.

$A B C D E$ is a pentagon.
A circle, centre O, passes through the points A, C, D and E.
Angle $E A C=36^{\circ}$, angle $C A B=78^{\circ}$ and $A B$ is parallel to $D C$.
(a) Find the values of x, y and z, giving a reason for each.
(b) Explain why $E D$ is not parallel to $A C$.
(c) Find the value of angle $E O C$.
(d) $A B=A C$.

Find the value of angle $A B C$.

