Sequences Difficulty: Hard

Question Paper 2

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Sequences
Paper	Paper 4
Difficulty	Hard
Booklet	Question Paper 2

Time allowed: 94 minutes
Score: /82

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	A	B	C	D
$>83 \%$	67%	51%	41%	31%

CIE IGCSE Maths (0980)

9	8	7	6	5	4
$>95 \%$	87%	80%	69%	58%	46%

Question 1

Consecutive integers are set out in rows in a grid.
(a) This grid has 5 columns.

The shape drawn encloses five numbers $7,9,13,17$ and 19 . This is the $n=13$ shape. In this shape, $a=7, b=9, c=17$ and $d=19$.
(i) Calculate $b c-a d$ for the $n=13$ shape.
(ii) For the 5 column grid, $a=n-6$.

Write down b, c and d in terms of n for this grid.
(iii) Write down $b c-a d$ in terms of n.

Show clearly that it simplifies to 20 .
(b) This grid has 6 columns. The shape is drawn for $n=10$.

(i) Calculate the value of $b c-a d$ for $n=10$.
(ii) Without simplifying, write down $b c-a d$ in terms of n for thisgrid.
(c) This grid has 7 columns.

Show clearly that $b c-a d=28$ for $n=17$.
Answer(c)
(d) Write down the value of $b c-a d$ when there are t columns in the grid.
(e) Find the values of c, d and $b c-a d$ for this shape.

Question 2

(a) Complete the table for the 6 th term and the nth term in each sequence.

	Sequence	6 thterm		n thterm
A	$11,9,7,5,3$			
B	$1,4,9,16,25$			
C	$2,6,12,20,30$			
D	$3,9,27,81,243$			
E	$1,3,15,61,213$			

(b) Find the value of the 100 th termin
(i) Sequence A,
(ii) Sequence C.
(c) Find the value of n in Sequence D when the nth term is equal to 6561 .
(d) Find the value of the 10 th term in Sequence E.

Diagram 1

Diagram 2

Diagram 3

The diagrams show a sequence of dots and circles.
Each diagram has one dot at the centre and 8 dots on each circle.
The radius of the first circle is 1 unit.
The radius of each new circle is 1 unit greater than the radius of the previous circle.
(a) Complete the table for diagrams 4 and 5 .

Diagram	1	2	3	4	5
Number of dots	9	17	25		
Area of the largest circle	π	4π	9π		
Total length of the circumferences of the circles	2π	6π	12π		

(b) (i) Write down, in terms of n, the number of dots in diagram n.
(ii) Find n, when the number of dots in diagram n is 1097 .
(c) Write down, in terms of n and π, the area of the largest circle in
(i) diagram n,
(ii) diagram $3 n$.
(d) Find, in terms of n and π, the total length of the circumferences of the circles in diagram n.

The first and the nth terms of sequences A, B and C are shown in the table below.
(a) Complete the table for each sequence.

	1st term	2nd term	3rd term	4th term	5th term	nth term
Sequence A	1					n^{3}
Sequence B	4					$4 n$
Sequence C	4					$(n+1)^{2}$

(b) Find
(i) the 8th term of sequence A,
(ii) the 12 th term of sequence C.
(c) (i) Which term in sequence A is equal to 15625 ?
(ii) Which term in sequence C is equal to 10000 ?
(d) The first four terms of sequences D and E are shown in the table below.

Use the results from part (a) to find the 5 th and the nth terms of the sequences D and E.

	1 st term	2nd term	3rd term	4th term	5th term	nth term
Sequence D	5	16	39	80		
Sequence E	0	1	4	9		

(a) (i) Work out the first 3 terms of the sequence whose nth term is $n(n+2)$.
(ii) Which term in this sequence is equal to 168 ?
(b) Find a formula for the nth term of the following sequences.
(i) 5
8
11
14
17......
(ii) 1

2
4
8
$16 \ldots .$.
(c)

Diagram 1

Diagram 2

Diagram 3

A sequence of diagrams is formed by drawing equilateral triangles each of side one centimetre.
Diagram 1 has 3 one centimetre lines.
Diagram 2 has 9 one centimetre lines.
The formula for the total number of one centimetre lines needed to draw all of the first n diagrams is

$$
\begin{equation*}
a n^{3}+b n^{2}+n . \tag{6}
\end{equation*}
$$

Find the values of a and b.
(a) (i) The first three positive integers 1, 2 and 3 have a sum of 6 .

Write down the sum of the first 4 positive integers.
(ii) The formula for the sum of the first n integers is $\frac{n(n+1)}{2}$.

Show the formula is correct when $n=3$.
(iii) Find the sum of the first 120 positive integers.
(iv) Find the sum of the integers

$$
\begin{equation*}
121+122+123+124+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots+199+200 \tag{2}
\end{equation*}
$$

(v) Find the sum of the even numbers
$2+4+6+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots+8 \ldots \ldots$.
(b) (i) Complete the following statements about the sums of cubes and the sums of integers.
$1^{3}=1 \quad 1=1$
$1^{3}+2 \stackrel{3}{=} 9$
$1+2=3$
$1^{3}+2 \stackrel{3}{+} 3 \stackrel{3}{=}$
$1+2+3=$ \qquad
$1^{3}+2^{3}+3^{3}+4^{3}=\quad \ldots \ldots \ldots \ldots$
$1+2+3+4=$ \qquad
(ii) The sum of the first 14 integers is 105 .

Find the sum of the first 14 cubes.
(iii) Use the formula in part(a)(ii) to write down a formula for the sum of the first n cubes.
(iv) Find the sum of the first 60 cubes.
(v) Find n when the sum of the first n cubes is 278784 .

