Graphs

Difficulty: Hard

Question Paper 4

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Graphs
Paper	Paper 4
Difficulty	Hard
Booklet	Question Paper 4

Time allowed: 101 minutes
Score:

/88
Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	A	B	C	D
$>83 \%$	67%	51%	41%	31%

CIE IGCSE Maths (0980)

9	8	7	6	5	4
$>95 \%$	87%	80%	69%	58%	46%

Answer the whole of this question on one sheet of graph paper.

$$
\mathrm{f}(x)=1-\frac{1}{x^{2}}, x \neq 0
$$

(a)

x	-3	-2	-1	-0.5	-0.4	-0.3	0.3	0.4	0.5	1	2	3
$\mathrm{f}(x)$	p	0.75	0	-3	-5.25	q	q	-5.25	-3	0	0.75	p

Find the values of p and q.
(b) (i) Draw an x-axis for $-3 \leqslant x \leqslant 3$ using 2 cm to represent 1 unit and a y-axis for $-11 \leqslant y \leqslant 2$ using 1 cm to represent 1 unit.
(ii) Draw the graph of $y=\mathrm{f}(x)$ for $-3 \leqslant x \leqslant-0.3$ and for $0.3 \leqslant x \leqslant 3$.
(c) Write down an integer k such that $\mathrm{f}(x)=k$ has no solutions.
(d) On the same grid, draw the graph of $y=2 x-5$ for $-3 \leqslant x \leqslant 3$.
(e) (i) Use your graphs to find solutions of the equation

$$
\begin{equation*}
1-\frac{1}{x^{2}}=2 x-5 \tag{3}
\end{equation*}
$$

(ii) Rearrange $1-\frac{1}{\mathrm{x}^{2}}=2 \mathrm{x}-5$ into the form $a x^{3}+b x^{2}+c=0$, where a, b and c are integers.
(f) (i) Draw a tangent to the graph of $y=\mathrm{f}(x)$ which is parallel to the line $y=2 x-5$.
(ii) Write down the equation of this tangent.

Answer the whole of this question on a sheet of graph paper.
(a)

$$
\mathrm{f}(x)=\frac{12}{\mathrm{x}+1}
$$

x	0	1	2	3	4	5	6	7	8	9	10	11
$\mathrm{f}(x)$	p	6	4	3	2.4	2	1.71	q	1.33	r	1.09	1

(i) Calculate the values of p, q and r.
(ii) Draw the graph of $y=\mathrm{f}(x)$ for $0 \leqslant x \leqslant 11$.

Use a scale of 1 cm to 1 unit on each axis.
(iii) By drawing a suitable line, find an estimate of the gradient of the graph at the point $(3,3)$.
(b) On the same grid draw the graph of $y=8-x$ for $0 \leqslant x \leqslant 8$.
(c) (i) Show that the equation $\mathrm{f}(x)=8-x$ simplifies to $x^{2}-7 \mathrm{x}+4=0$.
(ii) Use your graph to solve this equation, giving your answers correct to 1 decimal place.

Answer all of this question on a sheet of graph paper.
(a) $f(x)=x^{2}-x-3$.

x	-3	-2	-1	0	1	2	3	4
$\mathrm{f}(x)$	p	3	-I	-3	q	-I	3	r

(i) Find the values of p, q and r.
(ii) Draw the graph of $y=\mathrm{f}(x)$ for $-3 \leqslant x \leqslant 4$.

Use a scale of 1 cm to represent 1 unit on each axis.
(iii) By drawing a suitable line, estimate the gradient of the graph at the point where $x=-1$.
(b) $g(x)=6-\frac{x^{3}}{3}$.

x	-2	-1	0	1	2	3
$\mathrm{~g}(x)$	8.67	u	v	5.67	3.33	-3

(i) Find the values of u and v.
(ii) On the same grid as part (a) (ii) draw the graph of $y=\mathrm{g}(x)$ for $-2 \leqslant x \leqslant 3$.
(c) (i) Show that the equation $\mathrm{f}(x)=\mathrm{g}(x)$ simplifies to $x^{3}+3 x^{2}-3 x-27=0$.
(ii) Use your graph to write down a solution of the equation $x^{3}+3 x^{2}-3 x-27=0$.

Answer the whole of this question on a sheet of graph paper.

t	0	1	2	3	4	5	6	7
$\mathrm{f}(t)$	0	25	37.5	43.8	46.9	48.4	49.2	49.6

(a) Using a scale of 2 cm to represent 1 unit on the horizontal t-axis and 2 cm to represent 10 units on the y-axis, draw axes for $0 \leq t \leq 7$ and $0 \leq y \leq 60$.
Draw the graph of the curve $y=\mathrm{f}(t)$ using the table of values above.
(b) $\mathrm{f}(t)=50\left(1-2^{-t}\right)$.
(i) Calculate the value of $f(8)$ and the value of $f(9)$.
(ii) Estimate the value of $\mathrm{f}(t)$ when t is large.
(c) (i) Draw the tangent to $y=\mathrm{f}(t)$ at $t=2$ and use it to calculate an estimate of the gradient of the curve at this point.
(ii) The function $\mathrm{f}(t)$ represents the speed of a particle at time t.

Write down what quantity the gradient gives.
(d) (i) On the same grid, draw $y=\mathrm{g}(t)$ where $\mathrm{g}(t)=6 t+10$, for $0 \leq t \leq 7$.
(ii) Write down the range of values for t where $\mathrm{f}(t)>\mathrm{g}(t)$.
(iii) The function $\mathrm{g}(t)$ represents the speed of a second particle at time t.

State whether the first or second particle travels the greater distance for $0 \leq t \leq 7$.
You must give a reason for your answer.

Answer the whole of this question on a sheet of graph paper.

x	04	03	02	01	0	1	2	3	4
$\mathrm{f}(x)$	08	4.5	8	5.5	0	05.5	08	04.5	8

(a) Using a scale of 2 cm to represent 1 unit on the x-axis and 2 cm to represent 4 units on the y-axis, draw axes for $-4 \leq x \leq 4$ and $-8 \leq y \leq 8$.
Draw the curve $y \# \mathrm{f}(x)$ using the table of values given above.
(b) Use your graph to solve the equation $\mathrm{f}(x)=0$.
(c) On the same grid, draw $y=\mathrm{g}(x)$ for $-4 \leq x \leq 4$, where $\mathrm{g}(x)=x+1$.
(d) Write down the value of
(i) $\mathrm{g}(1)$,
(ii) $\mathrm{fg}(1)$,
(iii) $\mathrm{g}^{01}(4)$,
(iv) the positive solution of $\mathrm{f}(x)=\mathrm{g}(x)$.
(e) Draw the tangent to $y=\mathrm{f}(x)$ at $x=3$. Use it to calculate an estimate of the gradient of the curve at this point.

