

Graphs Difficulty: Hard

Question Paper 4

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Торіс	Graphs
Paper	Paper 4
Difficulty	Hard
Booklet	Question Paper 4

Time allowed:	101 minutes
Score:	/88
Percentage:	/100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D
>83%	67%	51%	41%	31%

CIE IGCSE Maths (0980)

9	8	7	6	5	4
>95%	87%	80%	69%	58%	46%

Answer the whole of this question on one sheet of graph paper.

$$f(x) = I - \frac{I}{x^2}, x \neq 0$$

(a)

x	-3	-2	-1	-0.5	-0.4	-0.3	0.3	0.4	0.5	1	2	3
f(<i>x</i>)	p	0.75	0	-3	-5.25	q	q	-5.25	-3	0	0.75	р

Find the values of p and q .	[2]
(b) (i) Draw an x-axis for $-3 \le x \le 3$ using 2 cm to represent 1 unit and a y-axis for $-11 \le y \le 2$ using 1 cm to represent 1 unit.	[1]
(ii) Draw the graph of $y = f(x)$ for $-3 \le x \le -0.3$ and for $0.3 \le x \le 3$.	[5]
(c) Write down an integer k such that $f(x) = k$ has no solutions.	[1]

- (d) On the same grid, draw the graph of y = 2x 5 for $-3 \le x \le 3$. [2]
 - (e) (i) Use your graphs to find solutions of the equation $1 \frac{1}{x^2} = 2x 5$ [3]

(ii) Rearrange
$$1 - \frac{1}{x^2} = 2x - 5$$
 into the form $ax^3 + bx^2 + c = 0$, where a, b and c are integers. [2]

(f) (i) Draw a tangent to the graph of y = f(x) which is parallel to the line y = 2x - 5. [1]

(ii) Write down the equation of this tangent. [2]

Question 2

Answer the whole of this question on a sheet of graph paper.

(a)

$$f(x) = \frac{12}{x+1}$$

x	0	1	2	3	4	5	6	7	8	9	10	11
f(<i>x</i>)	р	6	4	3	2.4	2	1.71	q	1.33	r	1.09	1

(i) Calculate the values of p, q and r.

(ii) Draw the graph of y = f(x) for $0 \le x \le 11$. Use a scale of 1cm to 1 unit on each axis.

(iii) By drawing a suitable line, find an estimate of the gradient of the graph at the point (3, 3). [3]

[3]

[5]

(b) On the same grid draw the graph of
$$y = 8 - x$$
 for $0 \le x \le 8$. [2]

(c) (i) Show that the equation
$$f(x) = 8 - x$$
 simplifies to $x^2 - 7x + 4 = 0$. [2]

(ii) **Use your graph** to solve this equation, giving your answers correct to 1 decimal place. [2]

Answer all of this question on a sheet of graph paper.

(a) $f(x) = x^2 - x - 3$.

x	- 3	- 2	- 1	0	1	2	3	4
f(x)	р	3	- 1	-3	q	- 1	3	r

- (i) Find the values of p, q and r. [3]
- (ii) Draw the graph of y = f(x) for $-3 \le x \le 4$. Use a scale of 1 cm to represent 1 unit on each axis. [4]
- (iii) By drawing a suitable line, estimate the gradient of the graph at the point where x = -1. [3]

(b)
$$g(x) = 6 - \frac{x^3}{3}$$
.

x	- 2	- 1	0	1	2	3
g(<i>x</i>)	8.67	и	v	5.67	3.33	- 3

(i) Find the values of *u* and *v*.

[2]

(ii) On the same grid as **part (a) (ii)** draw the graph of
$$y = g(x)$$
 for $-2 \le x \le 3$. [4]

(c) (i) Show that the equation
$$f(x) = g(x)$$
 simplifies to $x^3 + 3x^2 - 3x - 27 = 0$. [1]

(ii) Use your graph to write down a solution of the equation $x^3 + 3x^2 - 3x - 27 = 0.$ [1]

Answer the whole of this question on a sheet of graph paper.

t	0	1	2	3	4	5	6	7
f(t)	0	25	37.5	43.8	46.9	48.4	49.2	49.6

- (a) Using a scale of 2 cm to represent 1 unit on the horizontal *t*-axis and 2 cm to represent 10 units on the *y*-axis, draw axes for 0 ≤ *t* ≤ 7 and 0 ≤ *y* ≤ 60. Draw the graph of the curve *y* = f(*t*) using the table of values above. [5]
- (b) $f(t) = 50(1 2^{-t})$.

(i)	Calculate the value of $f(8)$ and the value of $f(9)$.	[2]
(ii)	Estimate the value of $f(t)$ when t is large.	[1]

(c) (i)	Draw the tangent to $y = f(t)$ at $t = 2$ and use it to calculate an estimate of the gradient of	the
	curve at this point.	[3]
(ii)	The function $f(t)$ represents the speed of a particle at time t .	
	Write down what quantity the gradient gives.	[1]

(ii) Write down the range of values for t where $f(t) > g(t)$.	[0]
()	[2]
(iii) The function $g(t)$ represents the speed of a second particle at time t . State whether the first or second particle travels the greater distance for $0 \le t \le 7$. You must give a reason for your answer	[2]

Answer the whole of this question on a sheet of graph paper.

x	04	03	02	01	0	1	2	3	4
f(x)	08	4.5	8	5.5	0	05.5	08	04.5	8

⁽a) Using a scale of 2 cm to represent 1 unit on the x-axis and 2 cm to represent 4 units on the y-axis, draw axes for -4 ≤ x ≤ 4 and -8 ≤ y ≤ 8. Draw the curve y # f(x) using the table of values given above. [5]

- (b) Use your graph to solve the equation f(x) = 0. [2]
- (c) On the same grid, draw y = g(x) for $-4 \le x \le 4$, where g(x) = x + 1. [2]
- (d) Write down the value of
 - (i) g(1),
 - (ii) fg(1),
 - (iii) g⁰¹(4),
 - (iv) the **positive** solution of f(x) = g(x).
- (e) Draw the tangent to y = f(x) at x = 3. Use it to calculate an estimate of the gradient of the curve at this point. [3]

[4]