

Graphs Difficulty: Hard

Question Paper 3

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Торіс	Graphs
Paper	Paper 4
Difficulty	Hard
Booklet	Question Paper 3

Time allowed:	132minutes
Score:	/115
Percentage:	/100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	А	В	С	D	
>83%	67%	51%	41%	31%	

CIE IGCSE Maths (0980)

9	8	7	6	5	4
>95%	87%	80%	69%	58%	46%

Question 1

(a) Complete the table of values for the function
$$y = x^2 - \frac{3}{-x}, x \neq 0.$$
 [3]

x	- 3	- 2	- 1	- 0.5	- 0.25	0.25	0.5	1	2	3
у	10	5.5		6.3	12.1	- 11.9			2.5	8

(b) Draw the graph of
$$y = x^2 - \frac{3}{x}$$
 for $-3 \le x \le -0.25$ and $0.25 \le x \le 3$. [5]

(c) Use your graph to solve
$$x^2 - \frac{3}{x} = 7.$$
 [3]

(d) Draw the tangent to the curve where x = -2. Use the tangent to calculate an estimate of the gradient of the curve where x = -2. [3] **Question 2**

(a) Complete the table of values for the function
$$f(x)$$
, where $f(x) = x^2 + \frac{1}{x^2}$, $x \neq 0$. [3]

x	-3	-2.5	-2	-1.5	-1	-0.5	0.5	1	1.5	2	2.5	3
f(<i>x</i>)		6.41		2.69		4.25	4.25		2.69		6.41	

(b) On the grid, draw the graph of
$$y = f(x)$$
 for $-3 \le x \le -0.5$ and $0.5 \le x \le 3$. [5]

- (c) (i) Write down the equation of the line of symmetry of the graph. [1]
 - (ii) Draw the tangent to the graph of y = f(x) where x = -1.5. Use the tangent to estimate the gradient of the graph of y = f(x) where x = -1.5. [3]

(iii) Use your graph to solve the equation $x^2 + \frac{1}{x^2} = 3.$ [2]

(iv) Draw a suitable line on the grid and use your graphs to solve the equation $x^{2} + \frac{1}{x^{2}} = 2x$. [3]

Head to <u>savemyexams.co.uk</u> for more awesome resources

(a) Complete the table for the function $f(x) = \frac{2}{x} - x^2$.

x	-3	-2	-1	-0.5	-0.2	0.2	0.5	1	2	3
f(x)	-9.7	-5			-10.0	10.0	3.75	1		-8.3

(b) On the grid draw the graph of y = f(x) for $-3 \le x \le -0.2$ and $0.2 \le x \le 3$.

[5]

[3]

(c) Use your graph to

(i) solve
$$f(x) = 2$$
, [1]

- (ii) find a value for k so that f(x) = k has 3 solutions. [1]
- (d) Draw a suitable line on the grid and use your graphs to solve the equation $\frac{2}{x} x^2 = 5x$. [3]

(e) Draw the tangent to the graph of y = f(x) at the point where x = -2.

Use it to calculate an estimate of the gradient of y = f(x) when x = -2. [3]

The graphs of y = f(x) and y = g(x) are shown above.

(a) Find the value of

(ii) g(0).

[1]

(b) Use the graphs to solve

(i) the equation
$$f(x) = 20$$
, [2]

(ii) the equation
$$f(x) = g(x)$$
, [2]

(iii) the inequality
$$f(x) < g(x)$$
. [1]

(c) Use the points A and B to find the gradient of
$$y = g(x)$$
 as an exact fraction. [2]

(d) On the grid, draw the graph of
$$y = g(x) - 10$$
. [2]

- (e) (i) Draw the tangent to the graph of y = f(x) at (-3, -27). [1]
 - (ii) Write down the equation of this tangent. [1]
- (f) A region, R, contains points whose co-ordinates satisfy the inequalities

$$-3 \le x \le -2$$
, $y \le 40$ and $y \ge g(x)$.

On the grid, draw suitable lines and label this region *R*. [2]

Head to <u>savemyexams.co.uk</u> for more awesome resources

(a) The table shows some values for the equation $y = \frac{x}{2} - \frac{2}{x}$ for $-4 \le x \le -0.5$ and $0.5 \le x \le 4$.

x	-4	-3	-2	-1.5	-1	-0.5	0.5	1	1.5	2	3	4
у	-1.5	-0.83	0	0.58			-3.75		-0.58	0	0.83	1.5

(i) Write the missing values of *y* in the empty spaces.

(ii) On the grid, draw the graph of
$$y = \frac{x}{2} - \frac{2}{x}$$
 for $-4 \le x \le -0.5$ and $0.5 \le x \le 4$.

[5]

[3]

(b) Use your graph to solve the equation
$$\frac{x}{2} - \frac{2}{x} = 1$$
. [2]

(c) (i) By drawing a tangent, work out the gradient of the graph where x = 2. [3]

(ii) Write down the gradient of the graph where x = -2. [1]

(d) (i) On the grid, draw the line
$$y = -x$$
 for $-4 \le x \le 4$. [1]

(ii) Use your graphs to solve the equation
$$\frac{x}{2} - \frac{2}{x} = -x$$
. [2]

(e) Write down the equation of a straight line which passes through the origin and does not intersect the graph of $y = \frac{x}{2} - \frac{2}{x}$. [2]

Answer the whole of this question on a sheet of graph paper.

The table shows some of the values of the function $f(x) = x^2 - \frac{1}{x}, x \neq 0.$

x	-3	-2	-1	-0.5	-0.2	0.2	0.5	1	2	3
у	9.3	4.5	2.0	2.3	р	-5.0	-1.8	q	3.5	r

(a) Find the values of p, q and r, correct to 1 decimal place.

(b) Using a scale of 2 cm to represent 1 unit on the *x*-axis and 1 cm to represent 1 unit on the *y*-axis, draw an *x*-axis for $-3 \le x \le 3$ and a *y*-axis for $-6 \le y \le 10$.

[3]

Draw the graph of y = f(x) for $-3 \le x \le -0.2$ and $0.2 \le x \le 3$. [6]

- (c) (i) By drawing a suitable straight line, find the three values of x where f(x) = -3x. [3]
 - (ii) $x^2 \frac{1}{x} = -3x$ can be written as $x^3 + ax^2 + b = 0$. Find the values of *a* and *b*. [2]
- (d) Draw a tangent to the graph of y = f(x) at the point where x = -2.

Use it to estimate the gradient of y = f(x) when x = -2. [3]

Answer the whole of this question on a sheet of graph paper. Use one side for your working and one side for your graphs.

Alaric invests \$100 at 4% per year compound interest.

(a) How many dollars will Alaric have after 2 years?

(b) After x years, Alaric will have y dollars. He knows a formula to calculate y. The formula is $y = 100 \times 1.04^{x}$

x (Years)	0	10	20	30	40
y (Dollars)	100	р	219	q	480

Use this formula to calculate the values of p and q in the table.	[2]
(c) Using a scale of 2 cm to represent 5 years on the <i>x</i> -axis and 2 cm to represent \$50 on the <i>y</i> -axis, draw <i>x</i> -axis for $0 \le x \le 40$ and a <i>y</i> -axis for $0 \le y \le 500$.	7 an
Plot the five points in the table and draw a smooth curve through them.	[5]
(d) Use your graph to estimate	
(i) how many dollars Alaric will have after 25 years,	[1]
(ii) how many years, to the nearest year, it takes for Alaric to have \$200.	[1]
(e) Beatrice invests \$100 at 7% per year simple interest .	
(i) Show that after 20 years Beatrice has \$240.	[2]
(ii) How many dollars will Beatrice have after 40 years?	[1]
(iii) On the same grid , draw a graph to show how the \$100 which Beatrice invests will increase durithe 40 years.	ing [2]
(f) Alaric first has more than Beatrice after <i>n</i> years.Use your graphs to find the value of <i>n</i>.	[1]

[2]