

Graphs Difficulty: Medium

Question Paper 4

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Торіс	Graphs
Paper	Paper 4
Difficulty	Medium
Booklet	Question Paper 4

Time allowed:	86 minutes
Score:	/75
Percentage:	/100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	А	В	С	D
>83%	67%	51%	41%	31%

CIE IGCSE Maths (0980)

9	8	7	6	5	4
>95%	87%	80%	69%	58%	46%

(a) Complete the table of values for $y = x + \frac{1}{x}$.

x	-4	-3	-2	-1	-0.5	0.5	1	2	3	4	
у	-4.3	-3.3			-2.5	2.5			3.3	4.3	[2]
	•		•					•	•		[2]

Six of the ten points have been plotted for you.

[3]

- (c) There are three integer values of k for which the equation $x + \frac{1}{x} = k$ has **no** solutions. Write down these three values of k. [2]
- (d) Write down the ranges of x for which the gradient of the graph of $y = x + \frac{1}{x}$ is positive. [2]
- (e) To solve the equation $x + \frac{1}{x} = 2x + 1$, a straight line can be drawn on the grid.
 - (i) Draw this line on the grid for $-2.5 \le x \le 1.5$. [2]

- (ii) On the grid, show how you would find the solutions. [1]
- (iii) Show how the equation $x + \frac{1}{x} = 2x + 1$ can be rearranged into the form $x^2 + bx + c = 0$ and find the values of *b* and *c*.

[3]

The diagram shows the accurate graph of y = f(x).

(a) Use the graph to find

(i) f(0),		[1]

(ii) f(8). [1]

(b) Use the graph to solve

(i) f(x) = 0, [2]

(ii)
$$f(x) = 5$$
. [1]

(c) *k* is an integer for which the equation f(x) = k has exactly two solutions.

Use the graph to find the two values of *k*. [2]

(d) Write down the range of values of x for which	the graph of $v = f(x)$ has a negative gradient.	[2]

(e) The equation f(x) + x - 1 = 0 can be solved by drawing a line on the grid.

(i) Write down the equation of this line. [1]

(ii) How many solutions are there for f(x) + x - 1 = 0? [1]

Question 3

Answer the whole of this question on a sheet of graph paper.

$$f(x) = 3x - \frac{1}{x^2} + 3, \ x \neq 0.$$

(a) The table shows some values of f(x).

x	-3	-2.5	-2	-1.5	-1	-0.5	-0.4	-0.3	0.3	0.4	0.5	1	1.5	2	2.5	3
f(<i>x</i>)	p	-4.7	-3.3	-1.9	-1	-2.5	-4.5	-9.0	-7.2	-2.1	0.5	q	7.1	8.8	10.3	r

Find the values of p, q and r.

- (b) Draw axes using a scale of 1 cm to represent 0.5 units for $-3 \ 2 \ \le x \le 3$ and 1 cm to represent units for $-10 \ \le y \le 12$. [1]
- (c) On your grid, draw the graph of y = f(x) for $-3 \le x \le -0.3$ and $0.3 \le x \le 3$. [5]

(d) Use your graph to solve the equations

(i)
$$3x - \frac{1}{x^2} + 3 = 0,$$
 [1]

(ii)
$$3x - \frac{1}{x^2} + 7 = 0.$$
 [3]

(e) g(x) = 3x + 3.

On the same grid, draw the graph of y = g(x) for $-3 \le x \le 3$. [2]

[1]

[3]

- (f) (i) Describe briefly what happens to the graphs of y = f(x) and y = g(x) for large positive or negative values of x.
 - (ii) Estimate the gradient of y = f(x) when x = 100. [1]

Answer the whole of this question on a sheet of graph paper.

(a) Find the values of k, m and n in each of the following equations, where a > 0.

$$(i) \quad a^0 = k, \tag{1}$$

(ii)
$$d^m = \frac{l}{a}$$
, [1]

(iii)
$$a^n = \sqrt{a^3}$$
. [1]

(b) The table shows some values of the function $f(x) = 2^x$.

x	-2	-1	-0.5	0	0.5	1	1.5	2	3
f(<i>x</i>)	r	0.5	0.71	S	1.41	2	2.83	4	t

- (i) Write down the values of r, s and t.
- (ii) Using a scale of 2 cm to represent 1 unit on each axis, draw an x-axis from -2 to 3 and a y-axis from 0 to 10.

[3]

(iii) On your grid, draw the graph of y = f(x) for $-2 \le x \le 3$. [4]

(c) The function g is given by g(x) = 6 - 2x.

(i) On the same grid as **part (b)**, draw the graph of
$$y = g(x)$$
 for $-2 \le x \le 3$. [2]

- (ii) Use your graphs to solve the equation 2 = 6 2x. [1]
- (iii) Write down the value of x for which $2 \le 6 2x$ for $x \in \{\text{positive integers}\}$. [1]

Answer the whole of this question on a sheet of graph paper.

The table gives values of $f(x) = 2^x$, for $-2 \le x \le 4$.

x	-2	-1	0	1	2	3	4
f(x)	р	0.5	q	2	4	r	16

(a) Find the values of p, q and r.

[3]

(b) Using a scale of 2 cm to 1 unit on the x-axis and 1 cm to 1 unit on the y-axis, draw the graph of y = f(x) for $-2 \le x \le 4$. [5]

(c) Use your graph to solve the equation 2 ^x = 7. [1]
(d) What value does f(x) approach as x decreases? [1]
(e) By drawing a tangent, estimate the gradient of the graph of y = f(x) when x = 1.5. [3]
(f) On the same grid draw the graph of y = 2x + 1 for 0 ≤ x ≤ 4. [2]
(g) Use your graph to find the non-integer solution of 2 ^x = 2x + 1. [2]