Graphs

Difficulty: Medium

Question Paper 4

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Graphs
Paper	Paper 4
Difficulty	Medium
Booklet	Question Paper 4

Time allowed:	$\mathbf{8 6}$ minutes
Score:	/75
Percentage:	/100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	A	B	C	D
$>83 \%$	67%	51%	41%	31%

CIE IGCSE Maths (0980)

9	8	7	6	5	4
$>95 \%$	87%	80%	69%	58%	46%

(a) Complete the table of values for $y=x+\frac{1}{x}$.

x	-4	-3	-2	-1	-0.5	0.5	1	2	3	4
y	-4.3	-3.3			-2.5	2.5			3.3	4.3

[2]

On the grid, draw the graph of $y=x+\frac{1}{x}$ for $-4 \leqslant x \leqslant-0.5$ and $0.5 \leqslant x \leqslant 4$.
Six of the ten points have been plotted for you.
(c) There are three integer values of k for which the equation $\mathrm{x}+\frac{1}{\mathrm{x}}=k$ has no solutions. Write down these three values of k.
(d) Write down the ranges of x for which the gradient of the graph of $y=x+\frac{1}{x}$ is positive.
(e) To solve the equation $x+\frac{1}{x}=2 x+1$, a straight line can be drawn on the grid.
(i) Draw this line on the grid for $-2.5 \leqslant x \leqslant 1.5$.
[2]
(ii) On the grid, show how you would find the solutions.
(iii) Show how the equation $\mathrm{x}+{ }_{\mathrm{x}}^{1}=2 \mathrm{x}+1$ can be rearranged into the form $x^{2}+b x+c=0$ and find the values of b and c.
[3]

The diagram shows the accurate graph of $y=\mathrm{f}(x)$.
(a) Use the graph to find
(i) $f(0)$,
(ii) $f(8)$.
(b) Use the graph to solve
(i) $\mathrm{f}(x)=0$,
(ii) $\mathrm{f}(x)=5$.
(c) k is an integer for which the equation $\mathrm{f}(x)=k$ has exactly two solutions.

Use the graph to find the two values of k.
(d) Write down the range of values of x for which the graph of $y=\mathrm{f}(x)$ has a negative gradient.
(e) The equation $\mathrm{f}(x)+x-1=0$ can be solved by drawing a line on the grid.
(i) Write down the equation of this line.
(ii) How many solutions are there for $\mathrm{f}(x)+x-1=0$?

Answer the whole of this question on a sheet of graph paper.

$$
\mathrm{f}(x)=3 x-\frac{1}{x^{2}}+3, x \neq 0 .
$$

(a) The table shows some values of $\mathrm{f}(x)$.

x	-3	-2.5	-2	-1.5	-1	-0.5	-0.4	-0.3	0.3	0.4	0.5	1	1.5	2	2.5	3
$\mathrm{f}(x)$	p	-4.7	-3.3	-1.9	-1	-2.5	-4.5	-9.0	-7.2	-2.1	0.5	q	7.1	8.8	10.3	r

Find the values of p, q and r.
(b) Draw axes using a scale of 1 cm to represent 0.5 units for $-32 \leqslant x \leqslant 3$ and 1 cm to represent units for $-10 \leqslant y \leqslant 12$.
(c) On your grid, draw the graph of $y=\mathrm{f}(x)$ for $-3 \leqslant x \leqslant-0.3$ and $0.3 \leqslant x \leqslant 3$.
(d) Use your graph to solve the equations
(i) $3 x-\frac{\mathrm{I}}{\mathrm{x}^{2}}+3=0$,
(ii) $3 x-\frac{\mathrm{l}}{\mathrm{x}^{2}}+7=0$.
(e) $g(x)=3 x+3$.

On the same grid, draw the graph of $y=\mathrm{g}(x)$ for $-3 \leqslant x \leqslant 3$.
(f) (i) Describe briefly what happens to the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$ for large positive or negative values of x.
(ii) Estimate the gradient of $y=\mathrm{f}(x)$ when $x=100$.

Answer the whole of this question on a sheet of graph paper.

(a) Find the values of k, m and n in each of the following equations, where $a>0$.

$$
\begin{equation*}
\text { (i) } \quad a^{0}=k \text {, } \tag{1}
\end{equation*}
$$

(ii) $d^{n}=\frac{1}{a^{\prime}}$
(iii) $a^{n}=\sqrt{a}^{3}$.
(b) The table shows some values of the function $\mathrm{f}(x)=2^{x}$.

x	-2	-1	-0.5	0	0.5	1	1.5	2	3
$\mathrm{f}(x)$	r	0.5	0.71	s	1.41	2	2.83	4	t

(i) Write down the values of r, s and t.
(ii) Using a scale of 2 cm to represent 1 unit on each axis, draw an x-axis from -2 to 3 and a y-axis from 0 to 10 .
(iii) On your grid, draw the graph of $y=\mathrm{f}(x)$ for $-2 \leqslant x \leqslant 3$.
(c) The function g is given by $\mathrm{g}(x)=6-2 x$.
(i) On the same grid as part (b), draw the graph of $y=\mathrm{g}(x)$ for $-2 \leqslant x \leqslant 3$.
(ii) Use your graphs to solve the equation $2=6-2 x$.
(iii) Write down the value of x for which $2<6-2 x$ for $x \in\{$ positive integers $\}$.

Answer the whole of this question on a sheet of graph paper.

The table gives values of $\quad \mathrm{f}(x)=2^{\mathrm{x}}$, for $-2 \leqslant x \leqslant 4$.

x	-2	-1	0	1	2	3	4
$\mathrm{f}(x)$	p	0.5	q	2	4	r	16

(a) Find the values of p, q and r.
(b) Using a scale of 2 cm to 1 unit on the x-axis and 1 cm to 1 unit on the y-axis, draw the graph of $y=\mathrm{f}(x)$ for $-2 \leqslant x \leqslant 4$.
(c) Use your graph to solve the equation $2 \stackrel{x}{=} 7$.
(d) What value does $\mathrm{f}(x)$ approach as x decreases?
(e) By drawing a tangent, estimate the gradient of the graph of $y=\mathrm{f}(x)$ when $x=1.5$.
(f) On the same grid draw the graph of $y=2 x+1$ for $0 \leqslant x \leqslant 4$.
(g) Use your graph to find the non-integer solution of $2 \stackrel{\mathrm{x}}{=} 2 x+1$.

