Graphs
 Difficulty: Medium

Question Paper 3

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Graphs
Paper	Paper 4
Difficulty	Medium
Booklet	Question Paper 3

Time allowed:	$\mathbf{1 2 2}$ minutes
Score:	$/ 106$
Percentage:	$/ 100$

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	A	B	C	D
$>83 \%$	67%	51%	41%	31%

CIE IGCSE Maths (0980)

9	8	7	6	5	4
$>95 \%$	87%	80%	69%	58%	46%

The table shows some values for the equation $y=x^{3}-2 x$ for $-2 \leqslant x \leqslant 2$.

x	-2	-1.5	-1	-0.6	-0.3	0	0.3	0.6	1	1.5	2
y	-4	-0.38			0.57		-0.57			0.38	4

(a) Complete the table of values.
(b) On the grid below, draw the graph of $y=x^{3}-2 x$ for $-2 \leqslant x \leqslant 2$.

The first two points have been plotted for you.

(c) (i) On the grid, draw the line $y=0.8$ for $-2 \leqslant x \leqslant 2$.
(ii) Use your graph to solve the equation $x^{3}-2 x=0.8$.
(d) By drawing a suitable tangent, work out an estimate for the gradient of the graph of $y=x^{3}-2 x$ where $x=-1.5$.

You must show your working.
(a) Complete the table for the function $\mathrm{f}(x)=\frac{\mathrm{x}^{3}}{2}-3 \mathrm{x}-1$.

x	-3	-2	-1.5	-1	0	1	1.5	2	3	3.5
$\mathrm{f}(x)$	-5.5		1.8	1.5		-3.5	-3.8	-3		9.9

(b) On the grid draw the graph of $y=\mathrm{f}(x)$ for $-3 \leq x \leq 3.5$

(c) Use your graph to
(i) solve $\mathrm{f}(x)=0.5$,
(ii) find the inequalities for k, so that $\mathrm{f}(x)=k$ has only 1 answer.
(d) (i) On the same grid, draw the graph of $y=3 x-2$ for $-1 \leq x \leq 3.5$
(ii) The equation $\frac{\mathrm{x}^{3}}{2}-3 \mathrm{x}-1=3 x-2$ can be written in the form $x^{3}+a x+b=0$. Find the values of a and b.
(iii) Use your graph to find the positive answers to $\frac{x^{3}}{2}-3 x-1=3 x-2$ for $-3 \leq x \leq 3.5$.

The diagram shows the accurate graph of $y=\mathrm{f}(x)$ where $\mathrm{f}(x)=\frac{1}{\mathrm{x}}+x^{2}$ for $0<x \leqslant 3$.

(a) Complete the table for $\mathrm{f}(x)=\frac{1}{\mathrm{x}}+$. 2.

x	-3	-2	-1	-0.5	-0.3	-0.1
$\mathrm{f}(x)$		3.5	0	-1.8		

(b) On the grid, draw the graph of $y=\mathrm{f}(x)$ for $-3 \leqslant x<0$.
(c) By drawing a tangent, work out an estimate of the gradient of the graph where $x=2$.
(d) Write down the inequality satisfied by k when $\mathrm{f}(x)=k$ has three answers.
(e) (i) Draw the line $y=1-x$ on the grid for $-3 \leqslant x \leqslant 3$.
(ii) Use your graphs to solve the equation $1-x=\frac{1}{\mathrm{x}}+x^{2}$.
(f) (i) Rearrange $x^{3}-x-2 x+1=0$ into the form $\frac{1}{\mathrm{x}}+x^{2}=a x+b$, where a and b are integers.
(ii) Write down the equation of the line that could be drawn on the graph
to solve $x^{3}-x^{2}-2 x+1=0$.
(a) Complete the table of values for $y=2^{x}$.
[2]

x	-2	-1	0	1	2	3
y	0.25		1	2		8

(b) On the grid, draw the graph of $y=2^{x}$ for $-2 \leqslant x \leqslant 3$.

(c) (i) On the grid, draw the straight line which passes through the points $(0,2)$ and $(3,8)$.
(ii) The equation of this line is $y=m x+2$.

Show that the value of m is 2 .
(iii) One answer to the equation $2^{x}=2 x+2$ is $x=3$.

Use your graph to find the other answer.
(d) Draw the tangent to the curve at the point where $x=1$.

Use this tangent to calculate an estimate of the gradient of $y=2^{x}$ when $x=1$.

A farmer makes a rectangular enclosure for his animals.
He uses a wall for one side and a total of 72 metres of fencing for the other three sides.
The enclosure has width x metres and area A square metres.
(a) Show that $A=72 x-2 x .^{2}$
(b) Factorise completely $72 x-2 x^{2}$.
(c) Complete the table for $A=72 x-2 x^{2}$.

x	0	5	10	15	20	25	30	35
A	0	310	520			550	360	

(d) Draw the graph of $A=72 x-2 x^{2}$ for $0 \leqslant x \leqslant 35$ on the grid opposite.

(e) Use your graph to find
(i) the values of x when $A=450$,
(ii) the maximum area of the enclosure.
[1]
(f) Each animal must have at least $12 \mathrm{~m}^{2}$ for grazing.

Calculate the greatest number of animals that the farmer can keep in an enclosure which has an area of $500 \mathrm{~m}^{2}$.
(a) Complete the table for the function $\mathrm{f}(x)=\frac{x^{3}}{10}+1$

x	-4	-3	-2	-1	0	1	2	3
$\mathrm{f}(x)$		-1.7	0.2	0.9	1	1.1	1.8	

(b) On the grid, draw the graph of $y=\mathrm{f}(x)$ for $-4 \leqslant x \leqslant 3$.

[4]
(c) Complete the table for the function $\mathrm{g}(x)=\frac{4}{x}, x \neq 0$.

x	-4	-3	-2	-1	1	2	3
$\mathrm{~g}(x)$	-1	-1.3				2	1.3

(d) On the grid, draw the graph of $y=\mathrm{g}(x)$ for $-4 \leqslant x \leqslant-1$ and $1 \leqslant x \leqslant 3$.
(e) (i) Use your graphs to solve the equation $\frac{\mathrm{x}^{3}}{10}+1=\frac{4}{\mathrm{x}}$.
(ii) The equation $\frac{\mathrm{x}^{3}}{10}+\mathrm{I}=\frac{4}{\mathrm{x}} \quad$ can be written as $x^{4}+a x+b=0$.

Find the values of a and b.
(a) $\mathrm{f}(x)=2$

Complete the table.

x	-2	-1	0	1	2	3	4
$y=\mathrm{f}(x)$		0.5	1	2	4		

(b) $\mathrm{g}(x)=x(4-x)$

Complete the table.

x	-1	0	1	2	3	4
$y=\mathrm{g}(x)$		0	3		3	0

[2]
(c) On the grid, draw the graphs of
(i) $y=\mathrm{f}(x)$ for $-2 \leqslant x \leqslant 4$,
(ii) $y=\mathrm{g}(x)$ for $-1 \leqslant x \leqslant 4$.

(d) Use your graphs to solve the following equations.
(i) $\mathrm{f}(x)=10$
(ii) $\mathrm{f}(x)=\mathrm{g}(x)$
(iii) $\mathrm{f}^{-1}(x)=1.7$

