

Graphs Difficulty: Medium

Question Paper 3

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Торіс	Graphs
Paper	Paper 4
Difficulty	Medium
Booklet	Question Paper 3

Time allowed:	122 minutes
Score:	/106
Percentage:	/100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D
>83%	67%	51%	41%	31%

CIE IGCSE Maths (0980)

9	8	7	6	5	4
>95%	87%	80%	69%	58%	46%

Head to <u>savemyexams.co.uk</u> for more awesome resources

The table shows some values for the equation $y = x^3 - 2x$ for $-2 \le x \le 2$.

x	-2	-1.5	-1	-0.6	-0.3	0	0.3	0.6	1	1.5	2
у	-4	-0.38			0.57		-0.57			0.38	4

(a) Complete the table of values.

(b) On the grid below, draw the graph of $y = x^3 - 2x$ for $-2 \le x \le 2$. The first two points have been plotted for you.

(c) (i) On the grid, draw the line y = 0.8 for $-2 \le x \le 2$. [1]

(ii) Use your graph to solve the equation
$$x^3 - 2x = 0.8$$
. [3]

(d) By drawing a suitable tangent, work out an estimate for the gradient of the graph of $y = x^3 - 2x$ where x = -1.5.

You must show your working.

[3]

Question 2

(a) Complete the table for the function
$$f(x) =$$

$$\frac{x^3}{2} - 3x - 1.$$
 [3]

x	-3	-2	-1.5	-1	0	1	1.5	2	3	3.5
f(<i>x</i>)	-5.5		1.8	1.5		-3.5	-3.8	-3		9.9

(b) On the grid draw the graph of y = f(x) for $-3 \le x \le 3.5$

[4]

(c) Use your graph to

(i) solve
$$f(x) = 0.5$$
, [3]

(ii) find the inequalities for k, so that f(x) = k has only 1 answer. [2]

(d) (i) On the same grid, draw the graph of y = 3x - 2 for $-1 \le x \le 3.5$ [3]

(ii) The equation $\frac{x^3}{2} - 3x - 1 = 3x - 2$ can be written in the form $x^3 + ax + b = 0$. Find the values of *a* and *b*. [2]

(iii) Use your graph to find the **positive** answers to $\frac{x^3}{2} - 3x - 1 = 3x - 2$ for $-3 \le x \le 3.5$. [2]

Question 3

[3]

(a) Complete the table for
$$f(x) = \frac{1}{x} + x^2$$
.

x	-3	-2	-1	-0.5	-0.3	-0.1
f(<i>x</i>)		3.5	0	-1.8		

(b) On the grid, draw the graph of
$$y = f(x)$$
 for $-3 \le x < 0$. [3]

(c) By drawing a tangent, work out an estimate of the gradient of the graph where x = 2. [3]

(d) Write down the inequality satisfied by
$$k$$
 when $f(x) = k$ has three answers. [1]

(e) (i) Draw the line
$$y = 1 - x$$
 on the grid for $-3 \le x \le 3$. [2]

(ii) Use your graphs to solve the equation
$$1 - x = \frac{1}{x} + x^2$$
. [1]

(f) (i) Rearrange $x^3 - x^2 - 2x + 1 = 0$ into the form $\frac{1}{x} + x^2 = ax + b$, where a and b are integers. [2]

(ii) Write down the equation of the line that could be drawn on the graph to solve x - x - 2x + 1 = 0. [1]

(a) Complete the table of values for $y = 2^{x}$.

x	-2	-1	0	1	2	3
у	0.25		1	2		8

(b) On the grid, draw the graph of $y = 2^x$ for $-2 \le x \le 3$. [3]

- (c) (i) On the grid, draw the straight line which passes through the points (0, 2) and (3, 8). [1]
 - (ii) The equation of this line is y = mx + 2. Show that the value of *m* is 2. [1]

- (iii) One answer to the equation $2^{x} = 2x + 2$ is x = 3. Use your graph to find the other answer. [1]
- (d) Draw the tangent to the curve at the point where x = 1.

Use this tangent to calculate an estimate of the gradient of
$$y = 2^x$$
 when $x = 1$. [3]

Question 5

Head to <u>savemyexams.co.uk</u> for more awesome resources

A farmer makes a rectangular enclosure for his animals. He uses a wall for one side and a total of 72 metres of fencing for the other three sides.

The enclosure has width x metres and area A square metres.

(a) Show that A = 72x - 2x.²

[2]

(b) Factorise completely
$$72x - 2x^2$$
. [2]

(c) Complete the table for $A = 72x - 2x^2$.

x	0	5	10	15	20	25	30	35	
A	0	310	520			550	360		[3]

(d) Draw the graph of $A = 72x - 2x^2$ for $0 \le x \le 35$ on the grid opposite.

(e) Use your graph to find

- (i) the values of x when A = 450,
- (ii) the maximum area of the enclosure. [1]
- (f) Each animal must have at least 12 m^2 for grazing.

Calculate the greatest number of animals that the farmer can keep in an enclosure which has an area of 500 m^2 .

[2]

Head to <u>savemyexams.co.uk</u> for more awesome resources

(a) Complete the table for the function $f(x) = \frac{x^3}{10} + 1$

x	-4	-3	-2	-1	0	1	2	3	_
f(<i>x</i>)		-1.7	0.2	0.9	1	1.1	1.8]
	•			•	•	•	•	•	[2

(b) On the grid, draw the graph of y = f(x) for $-4 \le x \le 3$.

(c) Complete the table for the function $g(x) = \frac{4}{x}, x \neq 0.$

x	-4	-3	-2	-1	1	2	3]
g(<i>x</i>)	-1	-1.3				2	1.3	
		·		•				[2]

12

(d) On the grid, draw the graph of
$$y = g(x)$$
 for $-4 \le x \le -1$ and $1 \le x \le 3$. [3]

(e) (i) Use your graphs to solve the equation
$$\frac{x^3}{10} + 1 = \frac{4}{x}$$
. [2]

(ii) The equation
$$\frac{x^3}{10} + 1 = \frac{4}{x}$$
 can be written as $x^4 + ax + b = 0$.

Find the values of *a* and *b*.

(a) $f(x) = 2^{x}$

Complete the table.

x	-2	-1	0	1	2	3	4	
$y = \mathbf{f}(x)$		0.5	1	2	4			
								[:

(b) g(x) = x(4 - x)

Complete the table.

x	-1	0	1	2	3	4
y = g(x)		0	3		3	0

(c) On the grid, draw the graphs of

(d) Use your graphs to solve the following equations.

(i)
$$f(x) = 10$$

[1]

(ii)
$$f(x) = g(x)$$
 [2]

(iii)
$$\vec{f}'(x) = 1.7$$
 [1]