Speed, Distance \& Time Difficulty: Easy
 Question Paper 1

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Algebra and graphs
Sub-Topic	Speed, Distance \& Time
Paper	Paper 2
Difficulty	Easy
Booklet	Question Paper 1

Time allowed:

37 minutes
Score:
/29
Percentage: /100

Grade Boundaries:
CIE IGCSE Maths (0580)

A *	A	B	C	D	E
$>88 \%$	76%	63%	51%	40%	30%

CIE IGCSE Maths (0980)

9	8	7	6	5	4	3
$>94 \%$	85%	77%	67%	57%	47%	35%

The diagram shows a speed-time graph.
Calculate the total distance travelled.

The diagram shows a speed-time graph for the journey of a car.

Calculate the total distance travelled.

Question 3

The speed-time graph shows the first 60 seconds of a train journey.

(a) Find the acceleration of thetrain.
(b) Calculate the distance the train has travelled in this time. Give your answer in kilometres.

The diagram shows the distance-time graph for the first 65 minutes of a bicycle journey.
(a) There are four different parts to the journey labelled A, B, C and D.

Write down the part of the journey with the fastest speed.
(b) After the first 65 minutes the bicycle travels at a constant speed of $20 \mathrm{~km} / \mathrm{h}$ for 15 minutes.

Draw this part of the journey on the diagram.

A car passes through a checkpoint at time $t=0$ seconds, travelling at $8 \mathrm{~m} / \mathrm{s}$. It travels at this speed for 10 seconds.
The car then decelerates at a constant rate until it stops when $t=55$ seconds.
(a) On the grid, draw the speed-time graph.

(b) Calculate the total distance travelled by the car after passing through the checkpoint.

A car travels a distance of 1280 metres at an average speed of 64 kilometres per hour.
Calculate the time it takes for the car to travel this distance.
Give your answer in seconds.

The diagram shows the speed-time graph for 120 seconds of a car journey.
(a) Calculate the deceleration of the car during the first 20 seconds.
(b) Calculate the total distance travelled by the car during the 120 seconds.
(c) Calculate the average speed for this 120 second journey.

Fritz drives a distance of 381 km in 2 hours and 18 minutes.
He then drives 75 km at a constant speed of $30 \mathrm{~km} / \mathrm{h}$.
Calculate his average speed for the whole journey.

