General Algebra Difficulty: Hard

Question Paper 2

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	General Algebra
Paper	Paper 4
Difficulty	Hard
Booklet	Question Paper 2

Time allowed:	$\mathbf{1 2 3}$ minutes
Score:	$/ 107$
Percentage:	$/ 100$

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	A	B	C	D
$>83 \%$	67%	51%	41%	31%

CIE IGCSE Maths (0980)

9	8	7	6	5	4
$>95 \%$	87%	80%	69%	58%	46%

(a)

The perimeter of the rectangle is 80 cm .
The area of the rectangle is $A \mathrm{~cm}^{2}$.
(i) Show that $x^{2}-40 x+A=0$.
(ii) When $A=300$, solve, by factorising, the equation $x^{2}-40 x+A=0$.
(iii) When $A=200$, solve, by using the quadratic formula, the equation $x^{2}-40 x+A=0$. Show all your working and give your answers correct to 2 decimal places.
(b) A car completes a 200 km journey with an average speed of $x \mathrm{~km} / \mathrm{h}$.

The car completes the return journey of 200 km with an average speed of $(x+10) \mathrm{km} / \mathrm{h}$.
(i) Show that the difference between the time taken for each of the two journeys is $\frac{2000}{x(x+10)}$ hours.
(ii) Find the difference between the time taken for each of the two journeys when $x=80$. Give your answer in minutes and seconds.

Mr Chan flies from London to Los Angeles, a distance of 8800 km .
The flight takes 11 hours and 10 minutes.
(a) (i) His plane leaves London at 0935 local time.

The local time in Los Angeles is 8 hours behind the time inLondon.
Calculate the local time when the plane arrives in Los Angeles.
(ii) Work out the average speed of the plane in km / h.
(b) There are three types of tickets, economy, business and first class. The price of these tickets is in the ratio economy : business : first class $=2: 5: 9$.
(i) The price of a business ticket is $\$ 2350$.

Calculate the price of a first class ticket.
(ii) Work out the price of an economy ticket as a percentage of the price of a first class ticket.
(c) The price of a business ticket for the same journey with another airline is $\$ 2240$.
(i) The price of a first class ticket is 70% more than a business ticket.

Calculate the price of this first class ticket.
(ii) The price of a business ticket is 180% more than an economy ticket.

Calculate the price of this economy ticket.
(d) Mr Chan hires a car in Los Angeles.

The charges are shown below.

Car Hire

$\$ 28.00$ per day plus $\$ 6.50$ per day insurance.
$\$ 1.25$ for every kilometre travelled after the first 800 km . The first 800 km are included in the price.

Mr Chan hired the car for 12 days and paid $\$ 826.50$.
(i) Find the number of kilometres Mr Chan travelled in this car.
(ii) The car used fuel at an average rate of 1 litre for every 10 km travelled. Fuel costs $\$ 1.30$ per litre.

Calculate the cost of the fuel used by the car during the 12 days.
(a) Solve the inequality.

$$
5 x-3>9
$$

(b) Factorise completely.
(i) $x y-18+3 y-6 x$
(ii) $8 x^{2}-72 y^{2}$
(c) Make r the subject of the formula.

$$
\begin{equation*}
p+5=\frac{1-2 r}{r} \tag{4}
\end{equation*}
$$

Alfonso runs 10 km at an average speed of $x \mathrm{~km} / \mathrm{h}$.
The next day he runs 12 km at an average speed of $(x-1) \mathrm{km} / \mathrm{h}$.
The time taken for the 10 km run is 30 minutes less than the time taken for the 12 km run.
(a) (i) Write down an equation in x and show that it simplifies to $x^{2}-5 x-20=0$.
(ii) Use the quadratic formula to solve the equation $x^{2}-5 x-20=0$. Show your working and give your answers correct to 2 decimal places.
(iii) Find the time that Alfonso takes to complete the 12 km run. Give your answer in hours and minutes correct to the nearest minute.
(b) A cheetah runs for 60 seconds.

The diagram shows the speed-time graph.

(i) Work out the acceleration of the cheetah during the first 10 seconds.
(ii) Calculate the distance travelled by the cheetah.
(a) y is directly proportional to the positive square root of $(x+2)$.

When $x=7, y=9$.
Find y when $x=23$.
(b) Simplify.

$$
\begin{equation*}
\frac{x^{2}+12 x+36}{x^{2}+4 x-12} \tag{5}
\end{equation*}
$$

(c)

$$
W=\sqrt{\frac{X-a}{a}}
$$

Make a the subject of the formula.
(d) Write as a single fraction in its simplest form.

$$
\begin{equation*}
\frac{x-2}{x+1}-\frac{x+3}{x-1} \tag{5}
\end{equation*}
$$

(a) Calculate $2^{0.7}$.
(b) Find the value of x in each of the following.
(i) $2^{x}=128$
[1]
(ii) $2^{x} \times 2^{9}=2^{13}$
[1]
(iii) $2^{9} \div 2^{x}=4$
(iv) $2^{x}=\sqrt[3]{2}$
(c) (i) Complete this table of values for $y=2^{x}$.

x	-3	-2	-1	0	1	2	3
y	0.125		0.5		2	4	8

[2]
(ii) On the grid, draw the graph of $y=2^{x}$ for $-3 \leqslant x \leqslant 3$.

(iii) Use your graph to solve $2^{x}=5$.
(iv) Find the equation of the line joining the points $(1,2)$ and $(3,8)$.
(v) By drawing a suitable line on your graph, solve $2^{x}-2-x=0$.
(a) Factorise $x^{2}-3 x-10$.
(b) (i) Show that $\frac{x+2}{x+1}+\frac{3}{x}=3$ simplifies to $2 x^{2}-2 x-3=0$. Answer(b)(i)
(ii) Solve $2 x^{2}-2 x-3=0$.

Give your answers correct to 3 decimal places.
Show all your working.
(c) Simplify $\frac{2 x+3}{x+2}-\frac{x}{x+1}$

