# General Algebra Difficulty: Medium 

## Question Paper 4

| Level | IGCSE |
| :--- | :--- |
| Subject | Maths (0580/0980) |
| Exam Board | CIE |
| Topic | General Algebra |
| Paper | Paper 4 |
| Difficulty | Medium |
| Booklet | Question Paper 4 |


| Time allowed: | 115 minutes |
| :--- | :--- |
| Score: | $/ 100$ |
| Percentage: | $/ 100$ |

## Grade Boundaries:

CIE IGCSE Maths (0580)

| A* | A | B | C | D |
| :--- | :--- | :--- | :--- | :--- |
| $>83 \%$ | $67 \%$ | $51 \%$ | $41 \%$ | $31 \%$ |

CIE IGCSE Maths (0980)

| 9 | 8 | 7 | 6 | 5 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $>95 \%$ | $87 \%$ | $80 \%$ | $69 \%$ | $58 \%$ | $46 \%$ |

(a) $y$ is 5 less than the square of the sum of $p$ and $q$. Write down a formula for $y$ in terms of $p$ and $q$.
(b) The cost of a magazine is $\$ x$ and the cost of a newspaper is $\$(x-3)$.

The total cost of 6 magazines and 9 newspapers is $\$ 51$.
Write down and solve an equation in $x$ to find the cost of a magazine.
(c) Bus tickets cost $\$ 3$ for an adult and $\$ 2$ for a child.

There are $a$ adults and $c$ children on a bus.
The total number of people on the bus is 52 .
The total cost of the 52 tickets is $\$ 139$.

Find the number of adults and the number of children on the bus.
(a) The cost of a bottle of water is $\$ w$.

The cost of a bottle of juice is $\$ j$.
The total cost of 8 bottles of water and 2 bottles of juice is $\$ 12$.
The total cost of 12 bottles of water and 18 bottles of juice is $\$ 45$.
Find the cost of a bottle of water and the cost of a bottle of juice.
(b) Roshni cycles 2 kilometres at $y \mathrm{~km} / \mathrm{h}$ and then runs 4 kilometres at $(y-4) \mathrm{km} / \mathrm{h}$.

The whole journey takes 40 minutes.
(i) Write an equation in $y$ and show that it simplifies to $y^{2}-13 y+12=0$.
(ii) Factorise $\quad y^{2}-13 y+12$.
(iii) Solve the equation $y^{2}-13 y+12=0$.
(iv) Work out Roshni's running speed.
(c) Solve the equation

$$
u^{2}-u-4=0 .
$$



The diagram shows two rectangles $A B C D$ and $P Q R S$.
$A B=(2 x+5) \mathrm{cm}, A D=(x+3) \mathrm{cm}, P Q=(x+4) \mathrm{cm}$ and $P S=x \mathrm{~cm}$.
(a) For one value of $x$, the area of rectangle $A B C D$ is $59 \mathrm{~cm}^{2}$ more than the area of rectangle $P Q R S$.
(i) Show that $x^{2}+7 x-44=0$.
[3]
(ii) Factorise $x^{2}+7 x-44$.
(iii) Solve the equation $x^{2}+7 x-44=0$.
(iv) Calculate the size of angle $D B A$.
(b) For a different value of $x$, the rectangles $A B C D$ and $P Q R S$ are similar.
(i) Show that this value of $x$ satisfies the equation $x^{2}-2 x-12=0$.
(ii) Solve the equation $x^{2}-2 x-12=0$, giving your answers correct to 2 decimal places.
(iii) Calculate the perimeter of the rectangle $P Q R S$.
(a) Solve the equation $\frac{m-3}{4}+\frac{m+4}{3}=-7$.
(b) (i) $y=\frac{3}{x-1}-\frac{2}{x+3}$

Find the value of $y$ when $x=5$.
(ii) Write $\frac{3}{x-1}-\frac{2}{x+3}$ as a single fraction.
(iii) Solve the equation $\frac{3}{x-1}-\frac{2}{x+3}=\frac{1}{x}$.
(c) $\quad p=\frac{t}{q-1}$

Find $q$ in terms of $p$ and $t$.

(a) When the area of triangle $A B C$ is $48 \mathrm{~cm}^{2}$,
(i) show that $x^{2}+4 x-96=0$,
(ii) solve the equation $x^{2}+4 x-96=0$,
(iii) write down the length of $A B$.
(b) When $\tan y=\frac{1}{6}$, find the value of $x$.
(c) When the length of $A C$ is 9 cm ,
(i) show that $2 x^{2}+8 x-65=0$,
(ii)
solve the equation $\quad 2 x^{2}+8 x-65=0$,
(Show your working and give your answers correct to 2 decimal places.)
(iii) calculate the perimeter of triangle $A B C$.
(a) (i) Factorise $x^{2}-x-20$.
(ii) Solve the equation $x^{2}-x-20=0$.
(b) Solve the equation $3 x \stackrel{2}{-} 2 x-2=0$. Show all your working and give your answers correct to 2 decimal places.
(c) $\quad y=m^{2}-4 n^{2}$.

$$
\text { (i) Factorise } \stackrel{2}{m}^{2}-4 n^{2} \text {. }
$$

(ii) Find the value of $y$ when $m=4.4$ and $n=2.8$.
(iii) $m=2 x+3$ and $n=x-1$.

Find $y$ in terms of $x$, in its simplest form.
(iv) Make $n$ the subject of the formula $y=m^{2}-4 n^{2}$.
(d) (i) $m^{4}-16 n^{4}$ can be written as $\left(m^{2}-k n\right)^{2}\left(m^{2}+k n\right)^{2}$. Write down the value of $k$.
(ii) Factorise completely $m^{4} n-16 n^{5}$.

A packet of sweets contains chocolates and toffees.
(a) There are $x$ chocolates which have a total mass of 105 grams.

Write down, in terms of $x$, the mean mass of a chocolate.
(b) There are $x+4$ toffees which have a total mass of 105 grams.

Write down, in terms of $x$, the mean mass of a toffee.
(c) The difference between the two mean masses in parts (a) and (b) is 0.8 grams.

Write down an equation in $x$ and show that it simplifies to $x^{2}+4 x-525=0$.
(d) (i) Factorise $x^{2}+4 x-525$.
(ii) Write down the solutions of $x^{2}+4 x-525=0$.
(e) Write down the total number of sweets in the packet.
(f) Find the mean mass of a sweet in the packet.

