Geometry and Differentiation Difficulty: Hard

Question Paper 3

Level	AS \& A Level
Subject	Maths - Pure
Exam Board	Edexcel
Topic	Geometry and Differentiation
Sub-Topic	
Difficulty	Hard
Booklet	Question Paper 3

Time allowed: 68 minutes

Score: /57
Percentage: /100

Grade Boundaries:

A *	A	B	C	D	E	U
$>76 \%$	61%	52%	42%	33%	23%	$<23 \%$

Figure 2
The line l_{1}, shown in Figure 2 has equation $2 x+3 y=26$
The line l_{2} passes through the origin O and is perpendicular to l_{1}
(a) Find an equation for the line l_{2}

The line l_{2} intersects the line l_{1} at the point C.
Line l_{1} crosses the y-axis at the point B as shown in Figure 2.
(b) Find the area of triangle $O B C$.

Give your answer in the form $\frac{a}{b}$, where a and b are integers to be determined.

Figure 1
The straight line l_{1}, shown in Figure 1, has equation $5 y=4 x+10$
The point P with x coordinate 5 lies on l_{1}
The straight line l_{2} is perpendicular to l_{1} and passes through P.
(a) Find an equation for l_{2}, writing your answer in the form $a x+b y+c=0$ where a, b and c are integers.

The lines l_{1} and l_{2} cut the x-axis at the points S and T respectively, as shown in Figure 1.
(b) Calculate the area of triangle SPT.

The circle C has equation

$$
x^{2}+y^{2}-20 x-24 y+195=0
$$

The centre of C is at the point M.
(a) Find
(i) the coordinates of the point M,
(ii) the radius of the circle C.
N is the point with coordinates $(25,32)$.
(b) Find the length of the line $M N$.

The tangent to C at a point P on the circle passes through point N.
(c) Find the length of the line $N P$.

Figure 4

The circle C has radius 5 and touches the y-axis at the point $(0,9)$, as shown in Figure 4 .
(a) Write down an equation for the circle C, that is shown in Figure 4.

A line through the point $P(8,-7)$ is a tangent to the circle C at the point T.
(b) Find the length of $P T$.

The curve C has equation $y=x^{2}(x-6)+\frac{4}{x}, x>0$.
The points P and Q lie on C and have x-coordinates 1 and 2 respectively.
(a) Show that the length of $P Q$ is $\sqrt{ } 170$.
(b) Show that the tangents to C at P and Q are parallel.
(c) Find an equation for the normal to C at P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Figure 2
Figure 2 shows a sketch of the curve C with equation

$$
y=2-\frac{1}{x}, \quad x \neq 0
$$

The curve crosses the x-axis at the point A.
(a) Find the coordinates of A.
(b) Show that the equation of the normal to C at A can be written as

$$
2 x+8 y-1=0
$$

The normal to C at A meets C again at the point B, as shown in Figure 2.
(c) Find the coordinates of B.

