

Geometry and Differentiation Difficulty: Hard

Question Paper 3

Level	AS & A Level		
Subject	Maths - Pure		
Exam Board	Edexcel		
Торіс	Geometry and Differentiation		
Sub-Topic			
Difficulty	Hard		
Booklet	Question Paper 3		

Time allowed:	68 minutes		
Score:	/57		
Percentage:	/100		

Grade Boundaries:

A*	А	В	С	D	E	U
>76%	61%	52%	42%	33%	23%	<23%

The line l_1 , shown in Figure 2 has equation 2x + 3y = 26

The line l_2 passes through the origin O and is perpendicular to l_1

(a) Find an equation for the line l_2

(4)

The line l_2 intersects the line l_1 at the point C.

Line l_1 crosses the *y*-axis at the point *B* as shown in Figure 2.

(b) Find the area of triangle OBC.

Give your answer in the form $\frac{a}{b}$, where a and b are integers to be determined. (6)

Question 2

The straight line l_1 , shown in Figure 1, has equation 5y = 4x + 10

The point *P* with *x* coordinate 5 lies on l_1

The straight line l_2 is perpendicular to l_1 and passes through *P*.

(a) Find an equation for l_2 , writing your answer in the form ax + by + c = 0 where a, b (4) and c are integers.

The lines l_1 and l_2 cut the x-axis at the points S and T respectively, as shown in Figure 1.

(b) Calculate the area of triangle SPT.

(4)

The circle C has equation

$$x^2 + y^2 - 20x - 24y + 195 = 0$$

The centre of C is at the point M.

(a) Find

- (i) the coordinates of the point M,
- (ii) the radius of the circle C.

(5)

N is the point with coordinates (25, 32).

(b) Find the length of the line *MN*.

(2)

The tangent to C at a point P on the circle passes through point N.

(c) Find the length of the line *NP*.

(2)

The circle C has radius 5 and touches the y-axis at the point (0, 9), as shown in Figure 4.(a) Write down an equation for the circle C, that is shown in Figure 4. (3)

A line through the point P(8, -7) is a tangent to the circle *C* at the point *T*.

(b) Find the length of *PT*.

(3)

(Total 6 marks)

The curve C has equation $y = x^2(x-6) + \frac{4}{x}, x > 0$.

The points P and Q lie on C and have x-coordinates 1 and 2 respectively.

(a) Show that the length of PQ is $\sqrt{170}$.

(4)

(b) Show that the tangents to C at P and Q are parallel.

(5)

(c) Find an equation for the normal to C at P, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(4)

(Total 13 marks)

Figure 2 shows a sketch of the curve C with equation

$$y = 2 - \frac{1}{x}, \quad x \neq 0$$

The curve crosses the *x*-axis at the point *A*.

(a) Find the coordinates of *A*.

(1)

(b) Show that the equation of the normal to C at A can be written as

(6)

2x + 8y - 1 = 0

The normal to C at A meets C again at the point B, as shown in Figure 2.

(c) Find the coordinates of *B*.

(Total 11 marks)

(4)