Implicit
 Difficulty: Medium

Question Paper 2

Level	A Level only
Subject	Maths - Pure
Exam Board	Edexcel
Topic	Differentiation
Sub-Topic	Implicit
Difficulty	Medium
Booklet	Question Paper 2

Time allowed: $\quad 53$ minutes

Score: /44
Percentage: /100

Grade Boundaries:

A *	A	B	C	D	E	U
$>76 \%$	61%	52%	42%	33%	23%	$<23 \%$

- A curve C has the equation $y^{2}-3 y=x^{3}+8$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(b) Hence find the gradient of C at the point where $y=3$.

The curve C has the equation $y \mathrm{e}^{-2 x}=2 x+y^{2}$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(5)

The point P on C has coordinates $(0,1)$.
(b) Find the equation of the normal to C at P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(Total 9 marks)

The curve C has the equation

$$
\cos 2 x+\cos 3 y=1, \quad-\frac{\pi}{4} \leqslant x \leqslant \frac{\pi}{4}, \quad 0 \leqslant y \leqslant \frac{\pi}{6}
$$

(a) Find $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.

The point P lies on C where $x=\frac{\pi}{6}$.
(b) Find the value of y at P.
(c) Find the equation of the tangent to C at P, giving your answer in the form $a x+b y+c \pi=0$, where a, b and c are integers.

The curve C has equation

$$
2 x^{2} y+2 x+4 y-\cos (\pi y)=17
$$

(a) Use implicit differentiation to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.

The point P with coordinates $\left(3, \frac{1}{2}\right)$ lies on C
The normal to C at P meets the x-axis at the point A.
(b) Find the x coordinate of A, giving your answer in the form $\frac{a \pi+b}{c \pi+d}$, where a, b, c and d are integers to be determined.

Figure 4
Figure 4 shows a sketch of the curve with equation $x^{2}-2 x y+3 y^{2}=50$
(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y-x}{3 y-x}$

The curve is used to model the shape of a cycle track with both x and y measured in km.
The points P and Q represent points that are furthest west and furthest east of the origin O, as shown in Figure 4.

Using part (a),
(b) find the exact coordinates of the point P.
(c) Explain briefly how to find the coordinates of the point that is furthest north of the origin O. (You do not need to carry out this calculation).

