

Implicit Difficulty: Medium

Question Paper 2

Level	A Level only
Subject	Maths - Pure
Exam Board	Edexcel
Торіс	Differentiation
Sub-Topic	Implicit
Difficulty	Medium
Booklet	Question Paper 2

Time allowed:	53 minutes		
Score:	/44		
Percentage:	/100		

Grade Boundaries:

A*	А	В	С	D	E	U
>76%	61%	52%	42%	33%	23%	<23%

- A curve *C* has the equation $y^2 3y = x^3 + 8$.
 - (a) Find $\frac{dy}{dx}$ in terms of x and y.

(4)

(b) Hence find the gradient of C at the point where y = 3. (3)

(Total 7 marks)

The curve *C* has the equation $ye^{-2x} = 2x + y^2$.

(a) Find
$$\frac{dy}{dx}$$
 in terms of x and y.

(5)

The point P on C has coordinates (0, 1).

(b) Find the equation of the normal to C at P, giving your answer in the form ax + by + c = 0, where a, b and c are integers. (4)

(Total 9 marks)

The curve C has the equation

$$\cos 2x + \cos 3y = 1$$
, $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$, $0 \le y \le \frac{\pi}{6}$

(a) Find $\frac{dy}{dx}$ in terms of x and y.

The point *P* lies on *C* where $x = \frac{\pi}{6}$.

(b) Find the value of *y* at *P*.

(3)

(3)

(c) Find the equation of the tangent to C at P, giving your answer in the form $ax + by + c\pi = 0$, where a, b and c are integers. (3)

(Total 9 marks)

The curve C has equation

$$2x^2y + 2x + 4y - \cos(\pi y) = 17$$

(a) Use implicit differentiation to find $\frac{dy}{dx}$ in terms of x and y. (5)

The point *P* with coordinates $\left(3, \frac{1}{2}\right)$ lies on *C*

The normal to C at P meets the x-axis at the point A.

(b) Find the *x* coordinate of *A*, giving your answer in the form $\frac{a\pi + b}{c\pi + d}$, where *a*, *b*, *c* and *d* are integers to be determined.

(4)

Figure 4

Figure 4 shows a sketch of the curve with equation $x^2 - 2xy + 3y^2 = 50$

(a) Show that
$$\frac{dy}{dx} = \frac{y-x}{3y-x}$$
 (4)

The curve is used to model the shape of a cycle track with both x and y measured in km.

The points P and Q represent points that are furthest west and furthest east of the origin O, as shown in Figure 4.

Using part (a),

(b) find the exact coordinates of the point *P*.

(c) Explain briefly how to find the coordinates of the point that is furthest north of the origin *O*. (You **do not** need to carry out this calculation).

(1)

(5)