

Parametrics Difficulty: Easy

Question Paper 2

Level	A Level only
Subject	Maths - Pure
Exam Board	Edexcel
Topic	Differentiation
Sub-Topic	Parametrics
Difficulty	Easy
Booklet	Question Paper 2

Time allowed: 41 minutes

Score: /34

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>76%	61%	52%	42%	33%	23%	<23%

1

Head to savemyexams.co.uk for more awesome resources

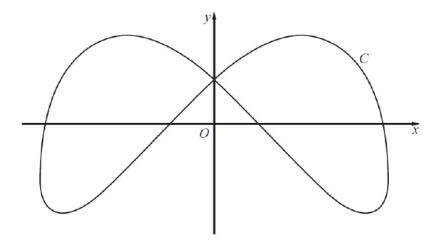


Figure 2

Figure 2 shows a sketch of the curve C with parametric equations

$$x = 4\sin\left(t + \frac{\pi}{6}\right), \quad y = 3\cos 2t, \quad 0 \leqslant t < 2\pi$$

(a) Find an expression for $\frac{dv}{dx}$ in terms of t.

(3)

(b) Find the coordinates of all the points on C where
$$\frac{dy}{dx} = 0$$
 (5)

(Total 8 marks)

A curve has parametric equations

$$x = 2 \cot t$$
, $y = 2 \sin^2 t$, $0 < t \le \frac{\pi}{2}$.

(a) Find an expression for $\frac{dy}{dx}$ in terms of the parameter t. (4)

(b) Find an equation of the tangent to the curve at the point where $t = \frac{\pi}{4}$

(c) Find a cartesian equation of the curve in the form y = f(x). State the domain on which the curve is defined. (4)

(Total 12 marks)

Question 3

A curve C has parametric equations

$$x = 4t + 3$$
, $y = 4t + 8 + \frac{5}{2t}$, $t \neq 0$

(a) Find the value of $\frac{d y}{dx}$ at the point on *C* where t = 2, giving your answer as a fraction in its simplest form.

(b) Show that the cartesian equation of the curve C can be written in the form

$$y = \frac{x^2 + ax + b}{x - 3} \qquad x \neq 3$$

where a and b are integers to be determined.

(Total 6 marks)

(3)

The curve C has parametric equations

$$x = 3t - 4, \quad y = 5 - \frac{6}{t}, \quad t > 0$$
(a) Find $\frac{dy}{dx}$ in terms of t

The point *P* lies on *C* where $t = \frac{1}{2}$

(b) Find the equation of the tangent to C at the point P. Give your answer in the form y = px + q, where p and q are integers to be determined. (3)

(c) Show that the cartesian equation for C can be written in the form

$$y = \frac{ax+b}{x+4}, \quad x > -4$$

where a and b are integers to be determined.

(Total 8 marks)

(3)