

Loci Difficulty: Medium

Question Paper 2

Level	A Level		
Subject	Maths Pure 3		
Exam Board	CIE		
Торіс	Complex Numbers		
Sub-Topic	Loci		
Difficulty	Medium		
Booklet	Question Paper 2		

Time allowed:	57 minutes		
Score:	/41		
Percentage:	/100		

Grade Boundaries:

A*	А	В	С	D	E
>90%	81%	70%	58%	46%	34%

The complex number $\frac{2}{-1+i}$ is denoted by u.

(i) Find the modulus and argument of u and u^2 .

[6]

(ii) Sketch an Argand diagram showing the points representing the complex numbers u and u^2 . Shade the region whose points represent the complex numbers z which satisfy both the inequalities |z| < 2 and $|z - u^2| < |z - u|$. [4]

(a) The complex numbers u and w satisfy the equations

u - w = 4i and uw = 5.

Solve the equations for u and w, giving all answers in the form x + iy, where x and y are real.

[5]

(b) (i) On a sketch of an Argand diagram, shade the region whose points represent complex numbers satisfying the inequalities |z - 2 + 2i| ≤ 2, arg z ≤ - ¼ and Re z ≥ 1, where Re z denotes the real part of z. [5]

(ii) Calculate the greatest possible value of Re z for points lying in the shaded region. [1]

4

(a) The complex number w is such that $\operatorname{Re} w > 0$ and $w + 3w^* = i w^2$, where w^* denotes the complex conjugate of w. Find w, giving your answer in the form x + iy, where x and y are real. [5]

(b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers

z which satisfy both the inequalities $|z - 2i| \le 2$ and $0 \le \arg(z + 2) \le \frac{1}{4}\pi$. Calculate the **gabatest** |z| for points in this region, giving your answer correct to 2 decimal places. [6]

The complex number 1 - i is denoted by u.

(i) Showing your working and without using a calculator, express

 $\frac{1}{u}$

in the form x + iy, where x and y are real.

[2]

(ii) On an Argand diagram, sketch the loci representing complex numbers Z satisfying the equations |z - u| = |z| and |z - i| = 2. [4]

(iii) Find the argument of each of the complex numbers represented by the points of intersection of the two loci in part (ii). [3]