Loci

Difficulty: Medium

Question Paper 2

Level	A Level
Subject	Maths Pure 3
Exam Board	CIE
Topic	Complex Numbers
Sub-Topic	Loci
Difficulty	Medium
Booklet	Question Paper 2

Time allowed:

Score:
/41

Percentage:
/100

Grade Boundaries:

A*	A	B	C	D	E
$>90 \%$	81%	70%	58%	46%	34%

The complex number $\frac{2}{-1+\mathrm{i}}$ is denoted by u.
(i) Find the modulus and argument of u and u^{2}.
(ii) Sketch an Argand diagram showing the points representing the complex numbers u and u^{2}. Shade the region whose points represent the complex numbers z which satisfy both the inequalities $|z|<2$ and $\left|z-u^{2}\right|<|z-u|$.
(a) The complex numbers u and w satisfy the equations

$$
u-w=4 \mathrm{i} \quad \text { and } \quad u w=5 .
$$

Solve the equations for u and w, giving all answers in the form $x+\mathrm{i} y$, where x and y are real.
(b) (i) On a sketch of an Argand diagram, shade the region whose points represent complex numbers satisfying the inequalities $|z-2+2 i| \leq 2, \arg z \leq-\frac{1}{4} \pi$ and $\operatorname{Re} z \geq 1$, where $\operatorname{Re} z$ denotes the real part of z.
(ii) Calculate the greatest possible value of $\mathrm{Re} z$ for points lying in the shaded region.
(a) The complex number w is such that $\operatorname{Re} w>0$ and $w+3 w^{*}=\mathrm{i} w^{2}$, where w^{*} denotes the complex conjugate of w. Find w, giving your answer in the form $x+\mathrm{i} y$, where x and y are real.
(b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers
Z which satisfy both the inequalities $\mid z-2 \mathrm{il} \leq 2$ and $0 \leq \arg (z+2) \leq{ }_{4}^{1} \pi$. Calculate the galadeesf $|z|$ for points in this region, giving your answer correct to 2 decimal places.

The complex number $1-\mathrm{i}$ is denoted by u.
(i) Showing your working and without using a calculator, express

$$
\begin{equation*}
\frac{\mathrm{i}}{u} \tag{2}
\end{equation*}
$$

in the form $x+\mathrm{i} y$, where x and y are real.
(ii) On an Argand diagram, sketch the loci representing complex numbers z satisfying the equations $|z-u|=|z|$ and $|z-i|=2$.
(iii) Find the argument of each of the complex numbers represented by the points of intersection of the two loci in part (ii).

