

Product Rule Difficulty: Medium

Question Paper 1

Level	A Level only
Subject	Maths - Pure
Exam Board	Edexcel
Topic	Differentiation
Sub-Topic	Product Rule
Difficulty	Medium
Booklet	Question Paper 1

Time allowed: 53 minutes

Score: /44

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>76%	61%	52%	42%	33%	23%	<23%

1

A curve C has equation

$$y = x^2 e^x$$
.

(a) Find $\frac{dy}{dx}$, using the product rule for differentiation.

(3)

(b) Hence find the coordinates of the turning points of C.

(3)

(c) Find $\frac{d^2y}{dx^2}$.

(2)

(d) Determine the nature of each turning point of the curve C.

(2)

(Total 10 marks)

A curve C has equation

$$y = e^{2x} \tan x$$
, $x \neq (2n + 1) - \frac{\pi}{2}$.

(a) Show that the turning points on C occur where $\tan x = -1$.

(6)

(b) Find an equation of the tangent to C at the point where x = 0.

(2)

(Total 8 marks)

(a) Differentiate with respect to x,

(i)
$$e^{3x}(\sin x + 2\cos x)$$
,

(3)

(ii)
$$x^3 \ln (5x+2)$$
.

(3)

Figure 1

Figure 1 shows a sketch of the curve C with the equation $y = (2x^2 - 5x + 2)e^{-x}$.

(a) Find the coordinates of the point where C crosses the y-axis.

(1)

(b) Show that C crosses the x-axis at x = 2 and find the x-coordinate of the other point where C crosses the x-axis.

(3)

(c) Find
$$\frac{dy}{dx}$$
.

(3)

(d) Hence find the exact coordinates of the turning points of \mathcal{C} .

(5)

The curve C has equation $x = 8y \tan 2y$

The point P has coordinates $\left(\pi, \frac{\pi}{8}\right)$

(a) Verify that P lies on C.

(1)

(b) Find the equation of the tangent to C at P in the form ay = x + b, where the constants a and b are to be found in terms of π .

(7)

(Total 8 marks)