Arithmetic with Complex numbers

Difficulty: Easy

Question Paper 1

Level	A Level
Subject	Maths Pure 3
Exam Board	CIE
Topic	Complex Numbers
Sub-Topic	Arithmetic with Complex Numbers
Difficulty	Easy
Booklet	Question Paper 1

Time allowed:
34 minutes
Score:
/24

Percentage: /100

Grade Boundaries:

A*	A	B	C	D	E
$>90 \%$	81%	70%	58%	46%	34%

(i) Solve the equation $z^{2}-2 i z-5=0$, giving your answers in the form $x+i y$ where x and y are real.
(ii) Find the modulus and argument of each root.
(iii) Sketch an Argand diagram showing the points representing the roots.

Throughout this question the use of a calculator is not permitted.
The complex number z is defined by $z=(\sqrt{ } 2)-(\sqrt{ } 6)$ i. The complex conjugate of z is denoted by z^{*}.
(i) Find the modulus and argument of z
(i) Express each of the following in the form $x+\mathrm{i} y$, where x and y are real and exact:
(a) $z+2 z^{*}$;
(b) $\frac{z^{*}}{\overline{\mathrm{i} z}}$.
(iii) On a sketch of an Argand diagram with origin O, show the points A and B representing the complex numbers z^{*} and $\mathrm{i} z$ respectively. Prove that angle $A O B$ is equal to $\frac{1}{6} \pi$.

Throughout this question the use of a calculator is not permitted.

The complex numbers $-3 . / 3+\mathrm{i}$ and $. / 3+2 \mathrm{i}$ are denoted by u and v respectively.
(i) Find, in the form $x+\mathrm{i} y$, where x and y are real and exact, the complex numbers $u v$ and. $\frac{u}{v}$
(ii) On a sketch of an Argand diagram with origin O, show the points A and B representing the complex numbers u and v respectively. Prove that angle $A O B=\frac{2}{3} \pi$.

