

Polars Difficulty: Easy

Question Paper 1

Level	A Level		
Subject	Maths Pure 3		
Exam Board	CIE		
Торіс	Complex Numbers		
Sub-Topic	Polars		
Difficulty	Easy		
Booklet	Question Paper 1		

Time allowed:	36 minutes		
Score:	/26		
Percentage:	/100		

Grade Boundaries:

A*	А	В	С	D	E
>90%	81%	70%	58%	46%	34%

Throughout this question the use of a calculator is not permitted.

The complex numbers -1 + 3i and 2 - i are denoted by u and v respectively. In an Argand diagram with origin O, the points A, B and C represent the numbers u, v and u + v respectively.

(i) Sketch this diagram and state fully the geometrical relationship between *OB* and *AC*. [4]

(ii) Find, in the form x + iy, where x and y are real, the complex number $\frac{u}{v}$ [3]

(iii) Prove that angle $AOB = \frac{3}{4}\pi$.

[2]

The complex number 2 + i is denoted by u. Its complex conjugate is denoted by u^* .

(i) Show, on a sketch of an Argand diagram with origin O, the points A, B and C representing the complex numbers u, u^* and $u + u^*$ respectively. Describe in geometrical terms the relationship between the four points O, A, B and C. [4]

(ii) Express $\frac{u}{u^*}$ in the form x + iy, where x and y are real.

[3]

(iii) By considering the argument of $\frac{u}{u^*}$, or otherwise, prove that

$$\tan^{-1}\left(\frac{4}{3}\right) = 2\tan^{-1}\left(\frac{1}{2}\right).$$
[2]

Throughout this question the use of a calculator is not permitted.

The complex number u is defined by

$$u = \frac{1+2i}{1-3i}$$

- (i) Express u in the form x + iy, where x and y are real.
- (ii) Show on a sketch of an Argand diagram the points A, B and C representing the complex numbers u, 1 + 2i and 1 3i respectively.

(iii) By considering the arguments of 1 + 2i and 1 - 3i, show that

$$\tan^{-1}2 + \tan^{-1}3 = \frac{3}{4}\pi.$$
 [3]

[3]