Polars
 Difficulty: Easy

Question Paper 1

Level	A Level
Subject	Maths Pure 3
Exam Board	CIE
Topic	Complex Numbers
Sub-Topic	Polars
Difficulty	Easy
Booklet	Question Paper 1

Time allowed:
36 minutes
Score: /26

Percentage: /100

Grade Boundaries:

A*	A	B	C	D	E
$>90 \%$	81%	70%	58%	46%	34%

Throughout this question the use of a calculator is not permitted.
The complex numbers $-1+3 \mathrm{i}$ and $2-\mathrm{i}$ are denoted by u and v respectively. In an Argand diagram with origin O, the points A, B and C represent the numbers u, v and $u+v$ respectively.
(i) Sketch this diagram and state fully the geometrical relationship between $O B$ and $A C$.
(ii) Find, in the form $x+i y$, where x and y are real, the complex number $\cdot \frac{u}{v}$
(iii) Prove that angle $A O B=\frac{3}{4} \pi$.

The complex number $2+\mathrm{i}$ is denoted by u. Its complex conjugate is denoted by u^{*}.
(i) Show, on a sketch of an Argand diagram with origin O, the points A, B and C representing the complex numbers u, u^{*} and $u+u^{*}$ respectively. Describe in geometrical terms the relationship between the four points O, A, B and C.
(ii) Express $\frac{u}{u^{*}}$ in the form $x+\mathrm{i} y$, where x and y are real.
(iii) By considering the argument of $\frac{u}{u^{* \prime}}$ or otherwise, prove that

$$
\begin{equation*}
\tan ^{-1}\left(\frac{4}{3}\right)=2 \tan ^{-1}\left(\frac{1}{2}\right) \tag{2}
\end{equation*}
$$

Throughout this question the use of a calculator is not permitted.

The complex number u is defined by

$$
u=\frac{1+2 \mathrm{i}}{1-3 \mathrm{i}} .
$$

(i) Express u in the form $x+\mathrm{i} y$, where x and y are real.
(ii) Show on a sketch of an Argand diagram the points A, B and C representing the complex numbers $u, 1+2 \mathrm{i}$ and $1-3 \mathrm{i}$ respectively.
(iii) By considering the arguments of $1+2 \mathrm{i}$ and $1-3 \mathrm{i}$, show that

$$
\begin{equation*}
\tan ^{-1} 2+\tan ^{-1} 3=\frac{3}{4} \pi \tag{3}
\end{equation*}
$$

