Separation of Variables
 Difficulty: Easy

Question Paper 2

Level	A Level
Subject	Maths Pure 3
Exam Board	CIE
Topic	Differential Equations
Sub-Topic	Separation of Variables
Difficulty	Easy
Booklet	Question Paper 2

Time allowed:
45 minutes

Score:
/32

Percentage: /100

Grade Boundaries:

A*	A	B	C	D	E
$>90 \%$	81%	70%	58%	46%	34%

In a certain chemical reaction the amount, x grams, of a substance is decreasing. The differential equation relating x and t, the time in seconds since the reaction started, is

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=-k x \quad v t
$$

where k is a positive constant. It is given that $x=100$ at the start of the reaction.
(i) Solve the differential equation, obtaining a relation between x, t and k.
(ii) Given that $t=25$ when $x=80$, find the value of t when $x=40$.

In the diagram, the tangent to a curve at the point P with coordinates (x, y) meets the x-axis at T. The point N is the foot of the perpendicular from P to the x-axis. The curve is such that, for all values of x, the gradient of the curve is positive and $T N=2$.
(i) Show that the differential equation satisfied by x and y is $\frac{\mathrm{d} y}{\mathrm{~d} x} \nu^{\frac{1}{2}}$

The point with coordinates $(4,3)$ lies on the curve.
(ii) Solve the differential equation to obtain the equation of the curve, expressing y in terms of x.

The coordinates (x, y) of a general point on a curve satisfy the differential equation

$$
x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left(2-x^{2}\right) y .
$$

The curve passes through the point $(1,1)$. Find the equation of the curve, obtaining an expression for y in terms of x.

Compressed air is escaping from a container. The pressure of the air in the container at time t is P, and the constant atmospheric pressure of the air outside the container is A. The rate of decrease of P is proportional to the square root of the pressure difference $(P-A)$. Thus the differential equation connecting P and t is

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=-k \sqrt{ }(P-A),
$$

where k is a positive constant.
(i) Find, in any form, the general solution of this differential equation.
(ii) Given that $P=5 A$ when $t=0$, and that $P=2 A$ when $t=2$, show that $k=\sqrt{ } A$.
(iii) Find the value of t when $P=A$.
(iv) Obtain an expression for P in terms of A and t.

