Solving Differential Equations Difficulty: Easy

Question Paper 1

Level	A Level
Subject	Maths Pure 3
Exam Board	CIE
Topic	Differential Equations
Sub-Topic	Solving Differential Equations
Difficulty	Easy
Booklet	Question Paper 1

Time allowed:
 49 minutes

Score:
/35

Percentage: /100

Grade Boundaries:

A*	A	B	C	D	E
$>90 \%$	81%	70%	58%	46%	34%

A water tank has yertical sides and a horizontal rectangular base, as shown in the diagram. The area of the base is $2 \mathrm{~m}^{2}$. At time $t=0$ the tank is empty and water begins to flow into it at a rate of $\mathrm{l}^{3} \mathrm{~m}$ per hour. At the same time water begins to flow out from the base at a rate of $0.2 \sqrt{ } \mathrm{~h}^{3}$ per hour, where $h \mathrm{~m}$ is the depth of water in the tank at time t hours.
(i) Form a differential equation satisfied by h and t, and show that the time T hours taken for the depth of water to reach 4 m is given by

$$
T=\int_{0}^{4} \frac{10}{5-\sqrt{ } h} \mathrm{~d} h
$$

(ii) Using the substitution $u=5-\sqrt{ }$, find the value of T.

In a certain chemical reaction, a compound A is formed from a compound B. The masses of A and B at time t after the start of the reaction are x and y respectively and the sum of the masses is equal to 50 throughout the reaction. At any time the rate of increase of the mass of A is proportional to the mass of B at that time.
(i) Explain why $\frac{\mathrm{d} x}{\mathrm{~d} t}=k(50-x)$, where k is a constant.

It is given that $x=0$ when $t=0$, and $x=25$ when $t=10$.
(ii) Solve the differential equation in part (i) and express x in terms of t.
(i) Using partial fractions, find

$$
\int \frac{1}{y(4-y)} \mathrm{d} y
$$

(ii) Given that $y=1$ when $x=0$, solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=y(4-y),
$$

obtaining an expression for y in terms of x.
(iii) State what happens to the value of y if x becomes very large and positive.

In a certain industrial process, a substance is being produced in a container. The mass of the substance in the container t minutes after the start of the process is x grams. At any time, the rate of formation of the substance is proportional to its mass. Also, throughout the process, the substance is rempved
from the container at a constant rate of 25 grams per minute. When $t=0, x=1000$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=75$.
(i) Show that x and t satisfy the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=0.1(x-250) . \tag{2}
\end{equation*}
$$

(ii) Solve this differential equation, obtaining an expression for x in terms of t.

