# Scalar Product Difficulty: Medium 

## Question Paper 1

| Level | A Level |
| :--- | :--- |
| Subject | Maths Pure 3 |
| Exam Board | CIE |
| Topic | Vectors |
| Sub-Topic | Scalar Product |
| Difficulty | Medium |
| Booklet | Question Paper 1 |

Time allowed:
38 minutes
Score: /27

Percentage: /100

Grade Boundaries:

| A* | A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $>90 \%$ | $81 \%$ | $70 \%$ | $58 \%$ | $46 \%$ | $34 \%$ |



In the diagram, $O A B C$ is a pyramid in which $O A=2$ units, $O B=4$ units and $O C=2$ units. The edge $O C$ is vertical, the base $O A B$ is horizontal and angle $A O B=90^{\circ}$. Unit vectors $\mathbf{i}, \mathbf{j}$ and $\mathbf{k}$ are parallel to $O A, O B$ and $O C$ respectively. The midpoints of $A B$ and $B C$ are $M$ and $N$ respectively.
(a) Express the vectors $O N$ and $C M$ in terms of $\mathbf{i}, \mathbf{j}$ and $\mathbf{k}$.
(b) Calculate the angle between the directions of $O \vec{N}$ and $C M$.
(c) Show that the length of the perpendicular from $M$ to $O N$ is $\frac{3}{5} \sqrt{5}$.

The points $A$ and $B$ have position vectors, relative to the origin $O$, given by

$$
\overrightarrow{O A}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k} \quad \text { and } \quad \overrightarrow{O B}=2 \mathbf{i}+\mathbf{j}+3 \mathbf{k}
$$

The line $l$ has vector equation

$$
\mathbf{r}=(1-2 t) \mathbf{i}+(5+t) \mathbf{j}+(2-t) \mathbf{k} .
$$

(i) Show that $l$ does not intersect the line passing through $A$ and $B$.
(ii) The point $P$ lies on $l$ and is such that angle $P A B$ is equal to $60^{\circ}$. Given that the position vector of $P$ is $(1-2 t) \mathbf{i}+(5+t) \mathbf{j}+(2-t) \mathbf{k}$, show that $\quad 3 t^{2}+7 t+2=0$. Hence find the only possible position vector of $P$.

Referred to the origin $O$, the points $A, B$ and $C$ have position vectors given by

$$
\overrightarrow{O A}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}, \quad \overrightarrow{O B}=2 \mathbf{i}+4 \mathbf{j}+\mathbf{k} \quad \text { and } \quad \overrightarrow{O C}=3 \mathbf{i}+5 \mathbf{j}-3 \mathbf{k}
$$

(i) Find the exact value of the cosine of angle $B A C$.
(ii) Hence find the exact value of the area of triangle $A B C$.

