

Scalar Product Difficulty: Medium

Question Paper 1

Level	A Level
Subject	Maths Pure 3
Exam Board	CIE
Торіс	Vectors
Sub-Topic	Scalar Product
Difficulty	Medium
Booklet	Question Paper 1

Time allowed:	38 minutes		
Score:	/27		
Percentage:	/100		

Grade Boundaries:

A*	А	В	С	D	E
>90%	81%	70%	58%	46%	34%

In the diagram, *OABC* is a pyramid in which OA = 2 units, OB = 4 units and OC = 2 units. The edge *OC* is vertical, the base *OAB* is horizontal and angle $AOB = 90^{\circ}$. Unit vectors **i**, **j** and **k** are parallel to *OA*, *OB* and *OC* respectively. The midpoints of *AB* and *BC* are *M* and *N* respectively.

[3]

(a) Express the vectors *ON* and *CM* in terms of **i**, **j** and **k**.

(b) Calculate the angle between the directions of \overrightarrow{ON} and \overrightarrow{CM} . [3]

(c) Show that the length of the perpendicular from M to ON is
$$-\frac{3}{5}\sqrt{5}$$
. [4]

The points A and B have position vectors, relative to the origin O, given by

$$\overrightarrow{OA} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$$
 and $\overrightarrow{OB} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$.

The line l has vector equation

$$\mathbf{r} = (1 - 2t)\mathbf{i} + (5 + t)\mathbf{j} + (2 - t)\mathbf{k}.$$

[4]

(i) Show that l does not intersect the line passing through A and B.

(ii) The point P lies on l and is such that angle PAB is equal to 60° . Given that the position vector of P is $(1 - 2t)\mathbf{i} + (5 + t)\mathbf{j} + (2 - t)\mathbf{k}$, show that $3t^2 + 7t + 2 = 0$. Hence find the only possible position vector of P. [6]

4

Referred to the origin O, the points A, B and C have position vectors given by

$$\overrightarrow{OA} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$$
, $\overrightarrow{OB} = 2\mathbf{i} + 4\mathbf{j} + \mathbf{k}$ and $\overrightarrow{OC} = 3\mathbf{i} + 5\mathbf{j} - 3\mathbf{k}$.

(i) Find the exact value of the cosine of angle *BAC*.

(ii) Hence find the exact value of the area of triangle *ABC*.

[3]

[4]