Parallel, Intersecting \& Skew Difficulty: Medium

Question Paper 1

Level	A Level
Subject	Maths Pure 3
Exam Board	CIE
Topic	Vectors
Sub-Topic	Parallel, Intersecting \& Skew
Difficulty	Medium
Booklet	Question Paper 1

Time allowed:
64 minutes

Score:
/46

Percentage:
/100

Grade Boundaries:

A*	A	B	C	D	E
$>90 \%$	81%	70%	58%	46%	34%

The points A and B have position vectors, relative to the origin O, given by $\overrightarrow{O A}=\mathbf{i}+\mathbf{j}+\mathbf{k}$ and $\overrightarrow{O B}=2 \mathbf{i}+3 \mathbf{k}$. The line l has vector equation $\mathbf{r}=2 \mathbf{i}-2 \mathbf{j}-\mathbf{k}+\mu(-\mathbf{i}+2 \mathbf{j}+\mathbf{k})$.
(i) Show that the line passing through A and B does not intersect l.
(ii) Show that the length of the perpendicular from A to l is $\frac{1}{\sqrt{2}}$.

The lines l and m have equations $\mathbf{r}=3 \mathbf{i}-2 \mathbf{j}+\mathbf{k}+\lambda(-\mathbf{i}+2 \mathbf{j}+\mathbf{k})$ and $\mathbf{r}=4 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k}+\mu(a \mathbf{i}+b \mathbf{j}-\mathbf{k})$ respectively, where a and b are constants.
(i) Given that l and m intersect, show that

$$
\begin{equation*}
2 a-b=4 \text {. } \tag{4}
\end{equation*}
$$

(ii) Given also that l and m are perpendicular, find the values of a and b.
(iii) When a and b have these values, find the position vector of the point of intersection of l and m.

The equations of two straight lines are

$$
\mathbf{r}=\mathbf{i}+4 \mathbf{j}-2 \mathbf{k}+\lambda(\mathbf{i}+3 \mathbf{k}) \quad \text { and } \quad \mathbf{r}=a \mathbf{i}+2 \mathbf{j}-2 \mathbf{k}+\mu(\mathbf{i}+2 \mathbf{j}+3 a \mathbf{k}),
$$

where a is a constant.
(i) Show that the lines intersect for all values of a.
(ii) Given that the point of intersection is at a distance of 9 units from the origin, find the possible values of a.

The lines l and m have vectorequations

$$
\mathbf{r}=\mathbf{i}-2 \mathbf{k}+s(2 \mathbf{i}+\mathbf{j}+3 \mathbf{k}) \quad \text { and } \quad \mathbf{r}=6 \mathbf{i}-5 \mathbf{j}+4 \mathbf{k}+t(\mathbf{i}-2 \mathbf{j}+\mathbf{k})
$$

respectively.
(i) Show that l and m intersect, and find the position vector of their point of intersection.

Question 5

With respect to the origin O, the points A and B have position vectors given by

$$
\overrightarrow{O A}=2 \mathbf{i}+2 \mathbf{j}+\mathbf{k} \quad \text { and } \quad \overrightarrow{O B}=\mathbf{i}+4 \mathbf{j}+3 \mathbf{k}
$$

The line l has vector equation $\mathbf{r}=4 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k}+s(\mathbf{i}+2 \mathbf{j}+\mathbf{k})$.
(i) Prove that the line l does not intersect the line through A and B.

Two lines have equations

$$
\mathbf{r}=\left(\begin{array}{r}
5 \\
1 \\
-4
\end{array}\right)+s\left(\begin{array}{r}
1 \\
-1 \\
3
\end{array}\right) \quad \text { and } \quad \mathbf{r}=\left(\begin{array}{r}
p \\
4 \\
-2
\end{array}\right)+t\left(\begin{array}{r}
2 \\
5 \\
-4
\end{array}\right),
$$

where p is a constant. It is given that the lines intersect.
(i) Find the value of p and determine the coordinates of the point of intersection.

Question 7

Two lines l and m have equations $\mathrm{r}=2 \mathrm{i}-\mathrm{j}+\mathrm{k}+s(2 \mathrm{i}+3 \mathrm{j}-\mathrm{k})$ and $\mathrm{r}=\mathrm{i}+3 \mathrm{j}+4 \mathrm{k}+t(\mathrm{i}+2 \mathrm{j}+\mathrm{k})$ respectively.
(i) Show that the lines are skew.

