

Parallel, Intersecting & Skew Difficulty: Medium

Question Paper 1

Level	A Level
Subject	Maths Pure 3
Exam Board	CIE
Торіс	Vectors
Sub-Topic	Parallel, Intersecting & Skew
Difficulty	Medium
Booklet	Question Paper 1

Time allowed:	64 minutes		
Score:	/46		
Percentage:	/100		

Grade Boundaries:

A*	А	В	С	D	E
>90%	81%	70%	58%	46%	34%

The points *A* and *B* have position vectors, relative to the origin *O*, given by $\overrightarrow{OA} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\overrightarrow{OB} = 2\mathbf{i} + 3\mathbf{k}$. The line *l* has vector equation $\mathbf{r} = 2\mathbf{i} - 2\mathbf{j} - \mathbf{k} + \mu(-\mathbf{i} + 2\mathbf{j} + \mathbf{k})$.

[4]

[5]

(i) Show that the line passing through A and B does not intersect l.

(ii) Show that the length of the perpendicular from A to l is $\frac{1}{\sqrt{2}}$.

The lines *l* and *m* have equations $\mathbf{r} = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k} + \lambda(-\mathbf{i} + 2\mathbf{j} + \mathbf{k})$ and $\mathbf{r} = 4\mathbf{i} + 4\mathbf{j} + 2\mathbf{k} + \mu(a\mathbf{i} + b\mathbf{j} - \mathbf{k})$ respectively, where *a* and *b* are constants.

(i) Given that *l* and *m* intersect, show that

$$2a - b = 4.$$
 [4]

(ii) Given also that l and m are perpendicular, find the values of a and b. [4]

(iii) When a and b have these values, find the position vector of the point of intersection of l and m. [2]

4

The equations of two straight lines are

$$\mathbf{r} = \mathbf{i} + 4\mathbf{j} - 2\mathbf{k} + \lambda(\mathbf{i} + 3\mathbf{k})$$
 and $\mathbf{r} = a\mathbf{i} + 2\mathbf{j} - 2\mathbf{k} + \mu(\mathbf{i} + 2\mathbf{j} + 3a\mathbf{k})$,

where *a* is a constant.

(i) Show that the lines intersect for all values of *a*.

(ii) Given that the point of intersection is at a distance of 9 units from the origin, find the possible values of a. [4]

The lines l and m have vector equations

r = i - 2k + s(2i + j + 3k) and r = 6i - 5j + 4k + t(i - 2j + k)

respectively.

(i) Show that *l* and *m* intersect, and find the position vector of their point of intersection. [5]

Question 5

With respect to the origin O, the points A and B have position vectors given by

 $\overrightarrow{OA} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and $\overrightarrow{OB} = \mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$.

The line *l* has vector equation $\mathbf{r} = 4\mathbf{i} - 2\mathbf{j} + 2\mathbf{k} + s(\mathbf{i} + 2\mathbf{j} + \mathbf{k})$.

(i) Prove that the line *l* does not intersect the line through *A* and *B*.

[5]

Two lines have equations

$$\mathbf{r} = \begin{pmatrix} 5\\1\\-4 \end{pmatrix} + s \begin{pmatrix} 1\\-1\\3 \end{pmatrix} \quad \text{and} \quad \mathbf{r} = \begin{pmatrix} p\\4\\-2 \end{pmatrix} + t \begin{pmatrix} 2\\5\\-4 \end{pmatrix},$$

where p is a constant. It is given that the lines intersect.

(i) Find the value of *p* and determine the coordinates of the point of intersection. [5]

Question 7

Two lines l and m have equations r = 2i - j + k + s(2i + 3j - k) and r = i + 3j + 4k + t(i + 2j + k) respectively.

(i) Show that the lines are skew.

[4]