

Simplifying sin +/- cos Functions Difficulty: Easy

Question Paper 2

Level	A Level only
Subject	Maths - Pure
Exam Board	Edexcel
Topic	Trigonometry & Modelling
Sub-Topic	Simplifying sin +/- cos Functions
Difficulty	Easy
Booklet	Question Paper 2

Time allowed: 44 minutes

Score: /37

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>76%	61%	52%	42%	33%	23%	<23%

1

(i) Solve, for $0 \le \theta < 360^{\circ}$, the equation

$$5\sin\theta - 5\cos\theta = 2$$

giving your answers to one decimal place.

(Solutions based entirely on graphical or numerical methods are not acceptable.) (5)

(Total 5 marks)

In a particular circuit the current, I amperes, is given by	
$I = 4 \sin \theta - 3 \cos \theta$, $\theta > 0$,	
where θ is an angle related to the voltage.	
Given that $I = R \sin(\theta - \alpha)$, where $R > 0$ and $0 \le \alpha < 360^{\circ}$,	
(a) find the value of R , and the value of α to 1 decimal place.	(4)
(b) Hence solve the equation $4 \sin \theta - 3 \cos \theta = 3$ to find the values of θ between 0 and 360° .	(5)
(c) Write down the greatest value for <i>I</i> .	(1)

(d) Find the value of θ between 0 and 360° at which the greatest value of I occurs. (2)

(Total 12 marks)

$$f(x) = 5\cos x + 12\sin x$$

Given that $f(x) = R \cos(x - \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$,

(a) find the value of R and the value of α to 3 decimal places. (4)

(b) Hence solve the equation

$$5\cos x + 12\sin x = 6$$

for
$$0 \le x < 2\pi$$
. (5)

(c) (i) Write down the maximum value of $5 \cos x + 12 \sin x$. (1)

(ii) Find the smallest positive value of x for which this maximum value occurs.

(2)

. (a) Express $6\cos\theta + 8\sin\theta$ in the form $R\cos(\theta - \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$.

Give the value of a to 3 decimal places. (4)

(b)
$$p(\theta) = \frac{4}{12 + 6\cos\theta + 8\sin\theta}, \quad 0 \le \theta \le 2\pi$$

Calculate

(i) the maximum value of $p(\theta)$, (4)

(ii) the value of θ at which the maximum occurs.

(Total 8 marks)