

Addition & Double Angle formulae Difficulty: Medium

Question Paper 2

Level	A Level only
Subject	Maths - Pure
Exam Board	Edexcel
Topic	Trigonometry & Modelling
Sub-Topic	Addition & Double Angle Formulae
Difficulty	Medium
Booklet	Question Paper 2

Time allowed: 50 minutes

Score: /42

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>76%	61%	52%	42%	33%	23%	<23%

1

Question 1

(a) Show that

$$\csc 2x + \cot 2x = \cot x, \quad x \neq 90n^{\circ}, \quad n \in \mathbb{Z}$$
 (5)

(b) Hence, or otherwise, solve, for $0 \le \theta < 180^{\circ}$,

$$\csc(4\theta + 10^\circ) + \cot(4\theta + 10^\circ) = \sqrt{3}$$

You must show your working.

(Solutions based entirely on graphical or numerical methods are not acceptable.) (5)

(Total 10 marks)

(a) Starting from the formulae for $\sin(A+B)$ and $\cos(A+B)$, prove that

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$
(4)

(b) Deduce that

$$\tan\left(\theta + \frac{\pi}{6}\right) = \frac{1 + \sqrt{3}\tan\theta}{\sqrt{3 - \tan\theta}}$$
(3)

(c) Hence, or otherwise, solve, for $0 \le \theta \le \pi$,

$$1 + \sqrt{3} \tan \theta = (\sqrt{3} - \tan \theta) \tan (\pi - \theta)$$

Give your answers as multiples of π .

(6)

Question 3

Given that

$$2\cos(x+50)^{\circ} = \sin(x+40)^{\circ}$$

(a) Show, without using a calculator, that

$$\tan x^{\circ} = \frac{1}{3} \tan 40^{\circ} \tag{4}$$

ر

(b) Hence solve, for $0 \le \theta \le 360$,

$$2\cos(2\theta+50)^{\circ}=\sin(2\theta+40)^{\circ}$$

giving your answers to 1 decimal place.

(4)

(Total 8 marks)

(a) Use the double angle formulae and the identity

$$cos(A+B) \equiv cos A cos B - sin A sin B$$

to obtain an expression for $\cos 3x$ in terms of powers of $\cos x$ only. (4)

(b) (i) Prove that

$$\frac{\cos x}{1 + \sin x} + \frac{1 + \sin x}{\cos x} = 2 \sec x, \qquad x \neq (2n+1) \frac{\pi}{2}.$$
 (4)

(ii) Hence find, for $0 < x < 2\pi$, all the solutions of

$$\frac{\cos x}{1 + \sin x} + \frac{1 + \sin x}{\cos x} = 4.$$
 (3)

(Total 11 marks)