

Addition & Double Angle formulae Difficulty: Medium

Question Paper 1

Level	A Level only
Subject	Maths - Pure
Exam Board	Edexcel
Topic	Trigonometry & Modelling
Sub-Topic	Addition & Double Angle Formulae
Difficulty	Medium
Booklet	Question Paper 1

Time allowed: 67 minutes

Score: /56

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>76%	61%	52%	42%	33%	23%	<23%

1

Question 1

(a) Given that
$$\cos A = \frac{3}{4}$$
, where $270^{\circ} < A < 360^{\circ}$, find the exact value of $\sin 2A$. (5)

(b) (i) Show that
$$\cos \left(2x + \frac{\pi}{3}\right) + \cos\left(2x - \frac{\pi}{3}\right) \equiv \cos 2x$$
.

Given that

$$y = 3\sin^2 x + \cos\left(2x + \frac{\pi}{3}\right) + \cos\left(2x - \frac{\pi}{3}\right),$$
 (3)

(Total 8 marks)

Question 2

(a) Prove that

$$\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = 2 \csc 2\theta, \qquad \theta \neq 90n^{\circ}.$$
 (4)

(b) Sketch the graph of $y = 2 \csc 2\theta$ for $0^{\circ} < \theta < 360^{\circ}$. (2)

(c) Solve, for $0^{\circ} < \theta < 360^{\circ}$, the equation

$$\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = 3,$$

giving your answers to 1 decimal place.

(6)

(a) (i) By writing
$$3\theta = (2\theta + \theta)$$
, show that
$$\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta.$$
 (4)

(ii) Hence, or otherwise, for
$$0 < \theta < \frac{\pi}{3}$$
, solve
$$8 \sin^3 \theta - 6 \sin \theta + 1 = 0.$$

Give your answers in terms of
$$\pi$$
. (5)

(b) Using
$$\sin(\theta - \alpha) = \sin \theta \cos \alpha - \cos \theta \sin \alpha$$
, or otherwise, show that

$$\sin 15^{\circ} = \frac{1}{4} (\sqrt{6} - \sqrt{2}). \tag{4}$$

(Total 13 marks)

Question 4

(a) Prove that

$$\frac{1}{\sin 2\theta} - \frac{\cos 2\theta}{\sin 2\theta} = \tan \theta, \quad \theta \neq 90n^{\circ}, \ n \in \mathbb{Z}$$
 (4)

(b) Hence, or otherwise,

(i) show that
$$\tan 15^{\circ} = 2 - \sqrt{3}$$
, (3)

(ii) solve, for $0 < x < 360^{\circ}$,

$$\csc 4x - \cot 4x = 1 \tag{5}$$

(Total 12 marks)

(i)	Without	using a	a calculator,	find	the	exact	value	of
-----	---------	---------	---------------	------	-----	-------	-------	----

$$(\sin 22.5^{\circ} + \cos 22.5^{\circ})^{2}$$

(5)

(ii) (a) Show that
$$\cos 2\theta + \sin \theta = 1$$
 may be written in the form

$$k \sin^2 \theta - \sin \theta = 0$$
, stating the value of k . (2)

(b) Hence solve, for
$$0 \le \theta \le 360^{\circ}$$
, the equation

$$\cos 2\theta + \sin \theta = 1 \tag{4}$$

(Total 11 marks)