Iterative Methods Difficulty: Easy Question Paper 4

Level	A Level
Subject	Maths Pure 3
Exam Board	CIE
Topic	Numerical Solutions
Sub-Topic	Iterative Methods
Difficulty	Easy
Booklet	Question Paper 4

Time allowed:

Score:

Percentage:

53 minutes
/38
/100

Grade Boundaries:

A*	A	B	C	D	E
$>90 \%$	81%	70%	58%	46%	34%

(i) By sketching a suitable pair of graphs, show that the equation $x^{3}=3-x$ has exactly one real root.
(ii) Show that if a sequence of real values given by the iterative formula

$$
x_{n+1}=\frac{2 x_{n}^{3}+3}{3 x_{n}^{2}+1}
$$

converges, then it converges to the root of the equation in part (i).
(iii) Use this iterative formula to determine the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places.
(i) By sketching suitable graphs, show that the equation

$$
\sec x=3-x^{2}
$$

has exactly one root in the interval $0<x<\frac{1}{2} \pi$.
(ii) Show that, if a sequence of values given by the iterative formula

$$
x_{n+1}=\cos ^{-1}\left(\frac{1}{3-x_{n}^{2}}\right)
$$

converges, then it converges to a root of the equation given in part (i).
(iii) Use this iterative formula, with initial value $x_{1}=1$, to determine the root in the interval $0<x<\frac{1}{2} \pi$ correct to 2 decimal places, showing the result of each iteration.

The equation $x^{3}-x-3=0$ has one real root, α.
(i) Show that α lies between 1 and 2 .

Two iterative formulae derived from this equation are as follows:

$$
\begin{align*}
& x_{n+1}=x_{n}^{3}-3, \tag{A}\\
& x_{n+1}=\left(x_{n}+3\right) \frac{1}{3} \tag{B}
\end{align*}
$$

Each formula is used with initial value $x_{1}=1.5$.
(ii) Show that one of these formulae produces a sequence which fails to converge, and use the other formula to calculate α correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

The sequence of values given by the iterative formula

$$
x_{n+1}=\frac{3 x_{n}}{4}+\frac{15}{x_{n}^{3}},
$$

with initial value $x_{1}=3$, converges to α.
(i) Use this iterative formula to find α correct to 2 decimal places, giving the result of each iteration to 4 decimal places.
(i) State an equation satisfied by α and hence find the exact value of α.

The equation $x^{3}-8 x-13=0$ has one real root.
(i) Find the two consecutive integers between which this root lies.
(ii) Use the iterative formula

$$
x_{n+1}=\left(8 x_{n}+13\right)^{\frac{1}{3}}
$$

to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
(i) By sketching suitable graphs, show that the equation

$$
\begin{equation*}
4 x^{2}-1=\cot x \tag{2}
\end{equation*}
$$

has only one root in the interval $0<x<\frac{1}{2} \pi$.
(ii) Verify by calculation that this root lies between 0.6 and 1 .
(iii) Use the iterative formula

$$
x_{n+1}=\frac{1}{2} \sqrt{ }\left(1+\cot x_{n}\right)
$$

to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

