

Iterative Methods Difficulty: Easy

Question Paper 4

Level	A Level		
Subject	Maths Pure 3		
Exam Board	CIE		
Торіс	Numerical Solutions		
Sub-Topic	Iterative Methods		
Difficulty	Easy		
Booklet	Question Paper 4		

Time allowed:	53 minutes		
Score:	/38		
Percentage:	/100		

Grade Boundaries:

A*	А	В	С	D	E
>90%	81%	70%	58%	46%	34%

(i) By sketching a suitable pair of graphs, show that the equation $x^3 = 3 - x$ has exactly one real root. [2]

(ii) Show that if a sequence of real values given by the iterative formula

$$x_{n+1} = \frac{2x_n^3 + 3}{3x_n^2 + 1}$$

converges, then it converges to the root of the equation in part (i).

[2]

(iii) Use this iterative formula to determine the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]

Question 2

(i) By sketching suitable graphs, show that the equation

$$\sec x = 3 - x^2$$

[2]

has exactly one root in the interval
$$0 < x < \frac{1}{2}\pi$$
. [2]

(ii) Show that, if a sequence of values given by the iterative formula

$$x_{n+1} = \cos^{-1}(\frac{1}{3 - x_n^2})$$

converges, then it converges to a root of the equation given in part (i).

(iii) Use this iterative formula, with initial value $x_1 = 1$, to determine the root in the interval $0 < x \le \frac{1}{2} \pi$ correct to 2 decimal places, showing the result of each iteration. [3]

Question 3

The equation $x^3 - x - 3 = 0$ has one real root, α .

(i) Show that α lies between 1 and 2.

[2]

Two iterative formulae derived from this equation are as follows:

$$x_{n+1} = x_n^3 - 3,$$
 (A)
 $x_{n+1} = (x_n + 3)^{\frac{1}{3}}$ (B)

Each formula is used with initial value $x_1 = 1.5$.

(ii) Show that one of these formulae produces a sequence which fails to converge, and use the other formula to calculate α correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [5]

The sequence of values given by the iterative formula

$$x_{n+1} = \frac{3x_n}{4} + \frac{15}{x_n^{3}},$$

with initial value $x_1 = 3$, converges to α .

(i) Use this iterative formula to find α correct to 2 decimal places, giving the result of each iteration to 4 decimal places. [3]

(i) State an equation satisfied by α and hence find the exact value of α . [2]

The equation $x^3 - 8x - 13 = 0$ has one real root.

(i) Find the two consecutive integers between which this root lies. [2]

(ii) Use the iterative formula

$$x_{n+1} = (8x_n + 13)^{\frac{1}{3}}$$

to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

(i) By sketching suitable graphs, show that the equation

$$4x^2 - 1 = \cot x$$

has only one root in the interval $0 < x < \frac{1}{2}\pi$. [2]

[2]

(ii) Verify by calculation that this root lies between 0.6 and 1.

(iii) Use the iterative formula

$$x_{n+1} = \frac{1}{2} \sqrt{1 + \cot x_n}$$

to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]