Iterative Methods Difficulty: Medium
 Question Paper 1

Level	A Level
Subject	Maths Pure 3
Exam Board	CIE
Topic	Numerical Solutions
Sub-Topic	Iterative Methods
Difficulty	Medium
Booklet	Question Paper 1

Time allowed:

Score:

Percentage:

83 minutes
/59
/100

Grade Boundaries:

A*	A	B	C	D	E
$>90 \%$	81%	70%	58%	46%	34%

The parametric equations of a curve are

$$
x=\mathrm{e}^{2 t-3}, \quad y=4 \ln t,
$$

where $t>0$. When $t=a$ the gradient of the curve is 2 .
(a) Show that a satisfies the equation $a=\frac{1}{(}(3-\ln a)$.
(b) Verify by calculation that this equation has a root between 1 and 2 .
(c) Use the iterative formula $a_{n+1}=\frac{1}{2}\left(3-\ln a_{n}\right)$ to calculate a correct to 2 decimal places, showing the result of each iteration to 4 decimal places.

The curve with equation $y=x^{2} \cos \frac{1}{2} x$ has a stationary point at $x=p$ in the interval $0<x<\pi$
(i) Show that p satisfies the equation $\tan \frac{1}{2} p=\frac{4}{\dot{p}}$
(ii) Verify by calculation that p lies between 2 and 2.5.
(iii) Use the iterative formula $p_{n+1}=2 \tan ^{-1}\left(\frac{4}{p_{n}}\right)$ to determine the value of p correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

The diagram shows a semicircle with centre O, radius r and diameter $A B$. The point P on its circumference is such that the area of the minor segment on $A P$ is equal to half the area of the minor segment on $B P$. The angle $A O P$ is x radians.
(i) Show that x satisfies the equation $x=\frac{1}{3}(\pi+\sin x)$.
(ii) Verify by calculation that x lies between 1 and 1.5 .
(iii) Use an iterative formula based on the equation in part (i) to determine x correct to 3 decimal places. Give the result of each iteration to 5 decimal places.

In a chemical reaction a compound X is formed from a compound Y. The masses in grams of X and Y present at time t seconds after the start of the reaction are x and y respectively. The sum of the two masses is equal to 100 grams throughout the reaction. At any time, the rate of formation of X is
proportional to the mass of Y at that time. When $t=0, x=5$ and $\frac{\mathrm{d} x}{\mathrm{~d} t} 1.9$.
(i) Show that x satisfies the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=0.02(100-x) . \tag{2}
\end{equation*}
$$

(ii) Solve this differential equation, obtaining an expression for x in terms of t.
(iii) State what happens to the value of x as t becomes very large.
(i) By sketching a suitable pair of graphs, show that the equation

$$
\begin{equation*}
\operatorname{cosec} x=\frac{1}{2} x+1 \tag{2}
\end{equation*}
$$

where x is in radians, has a root in the interval $0<x<{ }_{2}^{1} \pi$.
(ii) Verify, by calculation, that this root lies between 0.5 and 1 .
(iii) Show that this root also satisfies the equation

$$
x=\sin ^{-1}\left(\frac{2}{x+2}\right)
$$

(iv) Use the iterative formula

$$
x_{n+1}=\sin ^{-1}\left(\frac{2}{x_{n}+2}\right),
$$

with initial value $x_{1}=0.75$, to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
(i) By sketching a suitable pair of graphs, show that the equation

$$
\begin{equation*}
2 \cot x=1+\mathrm{e}^{x}, \tag{2}
\end{equation*}
$$

where x is in radians, has only one root in the interval $0<x<\frac{1}{2} \pi$.
(ii) Verify by calculation that this root lies between 0.5 and 1.0.
(iii) Show that this root also satisfies the equation

$$
x=\tan ^{-1}\left(\frac{2}{1+\mathrm{e}^{x}}\right)
$$

[1]
(iv) Use the iterative formula

$$
x_{n+1}=\tan ^{-1}\left(\frac{2}{1+\mathrm{e}^{x_{n}}}\right),
$$

with initial value $x_{1}=0.7$, to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

The diagram shows a sector $A O B$ of a circle with centre O and radius r. The angle $A O B$ is α radians, where $0<\alpha<\pi$. The area of triangle $A O B$ is half the area of the sector.
(i) Show that α satisfies the equation

$$
\begin{equation*}
x=2 \sin x . \tag{2}
\end{equation*}
$$

(ii) Verify by calculation that α lies between $\frac{1}{2} \pi$ and $\frac{2}{3} \pi$.
(iii) Show that, if a sequence of values given by the iterative formula

$$
x_{n+1}=\frac{1}{3}\left(x_{n}+4 \sin x_{n}\right)
$$

converges, then it converges to a root of the equation in part (i).
(iv) Use this iterative formula, with initial value $x_{1}=1.8$, to find α correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

