Iterative Methods Difficulty: Easy Question Paper 1

Level	A Level
Subject	Maths Pure 3
Exam Board	CIE
Topic	Numerical Solutions
Sub-Topic	Iterative Methods
Difficulty	Easy
Booklet	Question Paper 1

Time allowed:

Score:

Percentage:

49 minutes
/35
/100

Grade Boundaries:

A*	A	B	C	D	E
$>90 \%$	81%	70%	58%	46%	34%

The equation $x^{3}-x^{2}-6=0$ has one real root, denoted by α.
(i) Find by calculation the pair of consecutive integers between which a lies.
(ii) Show that, if a sequence of values given by the iterative formula

$$
\begin{equation*}
x_{n+1}=\sqrt{ }\left(x_{n}+\frac{6}{x_{n}}\right) \tag{2}
\end{equation*}
$$

converges, then it converges to α.
(iii) Use this iterative formula to determine α correct to 3 decimal places. Give the result of each iteration to 5 decimal places.

The equation $x^{5}-3 x^{3}+x^{2}-4=0$ has one positive root.
(i) Verify by calculation that this root lies between 1 and 2 .
(ii) Show that the equation can be rearranged in the form

$$
\begin{equation*}
x=\sqrt[3]{\left(3 x+\frac{4}{x^{2}}-1\right)} \tag{1}
\end{equation*}
$$

(iii) Use an iterative formula based on this rearrangement to determine the positive root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
(i) By sketching suitable graphs, show that the equation $\mathrm{e}^{-\frac{1}{2} x}=4-x^{2}$ has one positive root and one negative root.
(ii) Verify by calculation that the negative root lies between -1 and -1.5 .
(iii) Use the iterative formula $x_{n+1}=-\sqrt{ }\left(4-\mathrm{e}^{-\frac{1}{2} x_{n}}\right)$ to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
(i) By sketching a suitable pair of graphs, show that the equation

$$
5 \mathrm{e}^{-x}=\sqrt{ } x
$$ has one root.

(ii) Show that, if a sequence of values given by the iterative formula

$$
x_{n+1}=\frac{1}{2} \ln \left(\frac{25}{x_{n}}\right)
$$

converges, then it converges to the root of the equation in part (i).
(iii) Use this iterative formula, with initial value $x_{1}=1$, to calculate the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

The variables x and e satisfy the differential equation

$$
(3+\cos 2 \theta) \frac{\mathrm{d} x}{\mathrm{~d} \theta}=x \sin 2 \theta,
$$

and it is given that $x=3$ when $\theta=\frac{1}{4} \pi$.
(i) Solve the differential equation and obtain an expression for x in terms of θ.
(i) State the least value taken by x.

