

Trigonometry Difficulty: Hard

Question Paper 1

Level	A Level	
Subject	Maths Pure 3	
Exam Board	CIE	
Topic	Trigonometry	
Difficulty	Hard	
Booklet	Question Paper 1	

Time allowed: 67 minutes

Score: /48

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	
>90%	81%	70%	58%	46%	34%	

1

(i) Show that the equation

$$\tan (x - 60^\circ) + \cot x = \sqrt{3}$$

can be written in the form

$$2\tan^2 x + (3)\tan x - 1 = 0.$$
 [3]

(ii) Hence solve the equation

for
$$0^{\circ} < x < 180^{\circ}$$
. $\tan (x - 60^{\circ}) + \cot x = \int 3$,

Solve the equation $\cot 2x + \cot x = 3$ for $0^{\circ} < x < 180^{\circ}$.

[6]

Question 3

Express the equation $\cot 2\theta = 1 + \tan \theta$ as a quadratic equation in $\tan \theta$. Hence solve this equation for $0^{\circ} < \theta < 180^{\circ}$.

(i) Prove the identity
$$\tan(45^{\circ} + x) + \tan(45^{\circ} - x) \equiv 2 \sec 2x$$
. [4]

(ii) Hence sketch the graph of
$$y = \tan(45^\circ + x) + \tan(45^\circ - x)$$
 for $0^\circ \le x \le 90^\circ$. [3]

By expressing the equation $\tan (\theta + 60^{\circ}) + \tan (\theta - 60^{\circ}) = \cot \theta$ in terms of $\tan \theta$ only, solve the equation for $0^{\circ} < \theta < 90^{\circ}$. [5]

(i) Show that the equation $(\sqrt{2})\csc x + \cot x = \sqrt{3}$ can be expressed in the form $R\sin(x-\alpha) = \sqrt{2}$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. [4]

(ii) Hence solve the equation $(\sqrt{2})$ cosec $x + \cot x = \sqrt{3}$, for $0^{\circ} < x < 180^{\circ}$. [4]

(i) Given that $\sec \theta + 2 \csc \theta = 3 \csc 2\theta$, show that $2 \sin \theta + 4 \cos \theta = 3$. [3]

(ii) Express $2 \sin \theta + 4 \cos \theta$ in the form $R \sin(\theta + \alpha)$ where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving the value of α correct to 2 decimal places. [3]

(iii) Hence solve the equation $\sec \theta + 2 \csc \theta = 3 \csc 2\theta$ for $0^{\circ} < \theta < 360^{\circ}$. [4]