

Vectors in 3D Difficulty: Medium

Question Paper 1

Level	A Level only
Subject	Maths - Pure
Exam Board	Edexcel
Topic	Vectors
Sub-Topic	Vectors in 3D
Difficulty	Medium
Booklet	Question Paper 1

Time allowed: 36 minutes

Score: /30

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>76%	61%	52%	42%	33%	23%	<23%

1

Question 1

Relative to a fixed origin O,

the point A has position vector $(2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k})$,

the point *B* has position vector $(4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k})$,

and the point C has position vector $(a\mathbf{i} + 5\mathbf{j} - 2\mathbf{k})$, where a is a constant and a < 0

D is the point such that $\overrightarrow{AB} = \overrightarrow{BD}$.

(a) Find the position vector of D.

(2)

Given $|\overrightarrow{AC}| = 4$

(b) find the value of a.

(3)

(Total 5 marks)

Given that $(b-a)\mathbf{i} - 2abc\mathbf{j} + 2\mathbf{k} = 10\mathbf{i} - 96\mathbf{j} + (7a+5b)\mathbf{k}$, find the values of a , b and c .	
	(6 marks)

(Total 6 marks)

Question 3

A triangle has vertices A(-2, 0, -4), B(-2, 4, -6) and C(3, 4, 4).

By considering the side lengths of the triangle, show that the triangle is a right-angled triangle.

(6 marks)

(Total 6 marks)

Question 4

The point A has position vector $\mathbf{a} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and the point B has position vector $\mathbf{b} = \mathbf{i} + \mathbf{j} - 4\mathbf{k}$, relative to an origin O.

(a) Find the position vector of the point C, with position vector \mathbf{c} , given by

$$c = a + b$$
.

(1)

(b) Show that *OACB* is a rectangle, and find its exact area.

(6)

The diagonals of the rectangle, AB and OC, meet at the point D.

(c) Write down the position vector of the point D.

(1)

Question 5

Relative to a fixed origin O,

the point A has position vector $\mathbf{i} + 7\mathbf{j} - 2\mathbf{k}$, the point B has position vector $4\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}$, and the point C has position vector $2\mathbf{i} + 10\mathbf{j} + 9\mathbf{k}$.

Given that ABCD is a parallelogram,

(a) find the position vector of point D.

(2)

The vector \overrightarrow{AX} has the same direction as \overrightarrow{AB} .

Given that $|\overrightarrow{AX}| = 10\sqrt{2}$,

(b) find the position vector of X.

(3)

(Total 5 marks)