Solving Differential Equations Difficulty: Medium

Question Paper 2

Level	A Level only
Subject	Maths - Pure
Exam Board	Edexcel
Topic	Integration
Sub-Topic	Solving Differential Equations
Difficulty	Medium
Booklet	Question Paper 2

Time allowed: $\quad 47$ minutes

Score: /39
Percentage: /100

Grade Boundaries:

A *	A	B	C	D	E	U
$>76 \%$	61%	52%	42%	33%	23%	$<23 \%$

A population growth is modelled by the differential equation

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=k P,
$$

where P is the population, t is the time measured in days and k is a positive constant.
Given that the initial population is P_{0},
(a) solve the differential equation, giving P in terms of P_{0}, k and t.

Given also that $k=2.5$,
(b) find the time taken, to the nearest minute, for the population to reach $2 P_{0}$.

In an improved model the differential equation is given as

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=\lambda P \cos \lambda t,
$$

where P is the population, t is the time measured in days and λ is a positive constant.
Given, again, that the initial population is P_{0} and that time is measured in days,
(c) solve the second differential equation, giving P in terms of P_{0}, λ and t.

Given also that $\lambda=2.5$,
(d) find the time taken, to the nearest minute, for the population to reach $2 P_{0}$ for the first time, using the improved model.
(a) Express $\frac{5}{(x-1)(3 x+2)}$ in partial fractions.
(b) Hence find $\int \frac{5}{(x-1)(3 x+2)} \mathrm{d} x$, where $x>1$.
(c) Find the particular solution of the differential equation

$$
\begin{equation*}
(x-1)(3 x+2) \frac{\mathrm{d} y}{\mathrm{~d} x}=5 y, \quad x>1 \tag{6}
\end{equation*}
$$

for which $y=8$ at $x=2$. Give your answer in the form $y=\mathrm{f}(x)$.
(a) Express $\frac{2}{P(P-2)}$ in partial fractions.

A team of biologists is studying a population of a particular species of animal.
The population is modelled by the differential equation

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{1}{2} P(P-2) \cos 2 t, t \geq 0
$$

where P is the population in thousands, and t is the time measured in years since the start of the study.

$$
\begin{equation*}
\text { Given that } P=3 \text { when } t=0, \tag{3}
\end{equation*}
$$

(b) solve this differential equation to show that

$$
\begin{equation*}
P=\frac{6}{3-\mathrm{e}^{\frac{1}{2} \sin 2 t}} \tag{7}
\end{equation*}
$$

(c) find the time taken for the population to reach 4000 for the first time.

Give your answer in years to 3 significant figures.

