

Solving Differential Equations Difficulty: Medium

Question Paper 2

Level	A Level only
Subject	Maths - Pure
Exam Board	Edexcel
Торіс	Integration
Sub-Topic	Solving Differential Equations
Difficulty	Medium
Booklet	Question Paper 2

Time allowed:	47 minutes	
Score:	/39	
Percentage:	/100	

Grade Boundaries:

1

A*	А	В	С	D	E	U
>76%	61%	52%	42%	33%	23%	<23%

A population growth is modelled by the differential equation

$$\frac{\mathrm{d}P}{\mathrm{d}t} = kP \; ,$$

where P is the population, t is the time measured in days and k is a positive constant.

Given that the initial population is P_0 ,

(a) solve the differential equation, giving P in terms of P_0 , k and t.

(4)

Given also that k = 2.5,

(b) find the time taken, to the nearest minute, for the population to reach $2P_0$.

(3)

In an improved model the differential equation is given as

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \lambda P \cos \lambda t \; ,$$

where P is the population, t is the time measured in days and λ is a positive constant.

Given, again, that the initial population is P_0 and that time is measured in days,

(C) solve the second differential equation, giving P in terms of P_0 , λ and t.

(4)

Given also that $\lambda = 2.5$,

(d) find the time taken, to the nearest minute, for the population to reach $2P_0$ for the first time, using the improved model.

(3)

(Total 14 marks)

(a) Express
$$\frac{5}{(x-1)(3x+2)}$$
 in partial fractions. (3)

(b) Hence find
$$\int \frac{5}{(x-1)(3x+2)} dx$$
, where $x > 1$. (3)

(c) Find the particular solution of the differential equation

$$(x-1)(3x+2)\frac{\mathrm{d}y}{\mathrm{d}x}=5y, \quad x>1,$$

for which y = 8 at x = 2. Give your answer in the form y = f(x). (6)

(a) Express
$$\frac{2}{P(P-2)}$$
 in partial fractions.

A team of biologists is studying a population of a particular species of animal.

The population is modelled by the differential equation

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{1}{2} P(P-2) \cos 2t \,, t \ge 0$$

where P is the population in thousands, and t is the time measured in years since the start of the study.

Given that P = 3 when t = 0, (3)

(b) solve this differential equation to show that

$$P = \frac{6}{3 - e^{\frac{1}{2}\sin 2t}}$$
 (7)

(c) find the time taken for the population to reach 4000 for the first time.Give your answer in years to 3 significant figures. (3)