Trapezium Rule Difficulty: Medium

Question Paper 3

Level	A Level only
Subject	Maths - Pure
Exam Board	Edexcel
Topic	Integration
Sub-Topic	Trapezium Rule
Difficulty	Medium
Booklet	Question Paper 3

Time allowed: $\quad 73$ minutes

Score: /61
Percentage: /100

Grade Boundaries:

A *	A	B	C	D	E	U
$>76 \%$	61%	52%	42%	33%	23%	$<23 \%$

Figure 3
Figure 3 shows a sketch of the curve with equation $y=\frac{2 \sin 2 x}{(1+\cos x)}, 0 \leq x \leq \frac{\pi}{2}$.
The finite region R, shown shaded in Figure 3, is bounded by the curve and the x-axis.
The table below shows corresponding values of x and y for $y=\frac{2 \sin 2 x}{(1+\cos x)}$.

x	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3 \pi}{8}$	$\frac{\pi}{2}$
y	0		1.17157	1.02280	0

(a) Complete the table above giving the missing value of y to 5 decimal places.
(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 4 decimal places.
(c) Using the substitution $u=1+\cos x$, or otherwise, show that

$$
\begin{equation*}
\int \frac{2 \sin 2 x}{(1+\cos x)} \mathrm{d} x=4 \ln (1+\cos x)-4 \cos x+k \tag{5}
\end{equation*}
$$

where k is a constant.
(d) Hence calculate the error of the estimate in part (b), giving your answer to 2 significant figures.

Figure 3
Figure 3 shows a sketch of part of the curve with equation $y=x^{\frac{1}{2}} \ln 2 x$.
The finite region R, shown shaded in Figure 3, is bounded by the curve, the x-axis and the lines $x=1$ and $x=4$
(a) Use the trapezium rule, with 3 strips of equal width, to find an estimate for the area of R, giving your answer to 2 decimal places.
(b) Find $\int x^{\frac{1}{2}} \ln 2 x \mathrm{~d} x$.
(c) Hence find the exact area of R, giving your answer in the form $a \ln 2+b$, where a and b are exact constants.

Figure 1
Figure 1 shows a sketch of part of the curve with equation $y=\frac{x}{1+\sqrt{x}}$. The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, the line with equation $x=1$ and the line with equation $x=4$.
(a) Complete the table with the value of y corresponding to $x=3$, giving your answer to 4 decimal places.

x	1	2	3	4
y	0.5	0.8284		1.3333

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate of the area of the region R, giving your answer to 3 decimal places.
(c) Use the substitution $u=1+\sqrt{ } x$, to find, by integrating, the exact area of R.

Figure 1
Figure 1 shows a sketch of part of the curve with equation $y=\frac{10}{2 x+5 \sqrt{ } x}, x>0$
The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, and the lines with equations $x=1$ and $x=4$

The table below shows corresponding values of x and y for $y=\frac{10}{2 x+5 \sqrt{ } x}$

x	1	2	3	4
y	1.42857	0.90326		0.55556

(a) Complete the table above by giving the missing value of y to 5 decimal places.
(b) Use the trapezium rule, with all the values of y in the completed table, to find an estimate for the area of R, giving your answer to 4 decimal places.
(c) By reference to the curve in Figure 1, state, giving a reason, whether your estimate in part (b) is an overestimate or an underestimate for the area of R.
(d) Use the substitution $u=\sqrt{ } x$, or otherwise, to find the exact value of

$$
\begin{equation*}
\int_{1}^{4} \frac{10}{2 x+5 \sqrt{ } x} d x \tag{6}
\end{equation*}
$$

The curve C has equation

$$
y=8-2^{x-1}, \quad 0 \leq x \leq 4
$$

(a) Complete the table below with the value of y corresponding to $x=1$

x	0	1	2	3	4
y	7.5		6	4	0

(b) Use the trapezium rule, with all the values of y in the completed table, to find an approximate value for $\int_{0}^{4}\left(8-2^{x-1}\right) \mathrm{d} x$

Figure 1
Figure 1 shows a sketch of the curve C with equation $y=8-2^{x-1}, 0 \leq x \leq 4$
The curve C meets the x-axis at the point A and meets the y-axis at the point B.

The region R, shown shaded in Figure 1, is bounded by the curve C and the straight line through A and B.
(c) Use your answer to part (b) to find an approximate value for the area of R.

Figure 1
Figure 1 shows a sketch of part of the curve with equation $y=x^{2} \ln x, x \geq 1$
The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the line $x=2$

The table below shows corresponding values of x and y for $y=x^{2} \ln x$

x	1	1.2	1.4	1.6	1.8	2
y	0	0.2625		1.2032	1.9044	2.7726

(a) Complete the table above, giving the missing value of y to 4 decimal places.
(1)
(b) Use the trapezium rule with all the values of y in the completed table to obtain an estimate for the area of R, giving your answer to 3 decimal places.
(c) Use integration to find the exact value for the area of R.

