

Trapezium Rule Difficulty: Medium

Question Paper 3

Level	A Level only
Subject	Maths - Pure
Exam Board	Edexcel
Торіс	Integration
Sub-Topic	Trapezium Rule
Difficulty	Medium
Booklet	Question Paper 3

Time allowed:	73 minutes
Score:	/61
Percentage:	/100

Grade Boundaries:

A*	А	В	С	D	E	U
>76%	61%	52%	42%	33%	23%	<23%

Figure 3 shows a sketch of the curve with equation $y = \frac{2 \sin 2x}{(1 + \cos x)}, 0 \le x \le \frac{\pi}{2}$.

The finite region R, shown shaded in Figure 3, is bounded by the curve and the x-axis.

The table below shows corresponding values of x and y for $y = \frac{2\sin 2x}{(1 + \cos x)}$.

x	0	<u>π</u> 8	<u>π</u> 4	$\frac{3\pi}{8}$	<u>π</u> 2
у	0		1.17157	1.02280	0

(a) Complete the table above giving the missing value of y to 5 decimal places.

(1)

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 4 decimal places.

(c) Using the substitution $u = 1 + \cos x$, or otherwise, show that

$$\int \frac{2\sin 2x}{(1+\cos x)} \, dx = 4\ln(1+\cos x) - 4\cos x + k$$

where k is a constant.

(5)

(3)

(d) Hence calculate the error of the estimate in part (b), giving your answer to 2 significant figures. (3)

Figure 3

Figure 3 shows a sketch of part of the curve with equation $y = x^{\frac{1}{2}} \ln 2x$.

The finite region *R*, shown shaded in Figure 3, is bounded by the curve, the *x*-axis and the lines x = 1 and x = 4

(a) Use the trapezium rule, with 3 strips of equal width, to find an estimate for the area of *R*, giving your answer to 2 decimal places. (4)

(b) Find $\int x^{\frac{1}{2}} \ln 2x \, dx$.

- (4)
- (c) Hence find the exact area of R, giving your answer in the form $a \ln 2 + b$, where a and b are exact constants. (3)

Figure 1 shows a sketch of part of the curve with equation $y = \frac{x}{1 + \sqrt{x}}$. The finite region *R*, shown shaded in Figure 1, is bounded by the curve, the *x*-axis, the line with equation x = 1 and the line with equation x = 4.

(a) Complete the table with the value of y corresponding to x = 3, giving your answer to 4 decimal places. (1)

x	1	2	3	4
У	0.5	0.8284		1.3333

(b) Use the trapezium rule, with all the values of *y* in the completed table, to obtain an estimate of the area of the region *R*, giving your answer to 3 decimal places.

(3)

(c) Use the substitution $u = 1 + \sqrt{x}$, to find, by integrating, the exact area of *R*.

(8)

Figure 1 shows a sketch of part of the curve with equation $y = \frac{10}{2x + 5\sqrt{x}}, x > 0$

The finite region *R*, shown shaded in Figure 1, is bounded by the curve, the *x*-axis, and the lines with equations x = 1 and x = 4

The table below shows corresponding values of x and y for $y = \frac{10}{2x + 5\sqrt{x}}$

x	1	2	3	4
у	1.42857	0.90326		0.55556

(a) Complete the table above by giving the missing value of y to 5 decimal places. (1)

(b) Use the trapezium rule, with all the values of y in the completed table, to find an estimate for the area of R, giving your answer to 4 decimal places. (3)

(c) By reference to the curve in Figure 1, state, giving a reason, whether your estimate in part (b) is an overestimate or an underestimate for the area of R. (1)

(d) Use the substitution $u = \sqrt{x}$, or otherwise, to find the exact value of

$$\int_{1}^{4} \frac{10}{2x + 5\sqrt{x}} \, \mathrm{d}x \tag{6}$$

The curve C has equation

$$y = 8 - 2^{x-1}, \qquad 0 \le x \le 4$$

(a) Complete the table below with the value of y corresponding to x = 1

y 7.5 6 4 0	x	0	1	2	3	4	
	у	7.5		6	4	0	(1)

(b) Use the trapezium rule, with all the values of y in the completed table, to find an approximate value for $\int_{0}^{4} (8 - 2^{x-1}) dx$ (3)

Figure 1 shows a sketch of the curve *C* with equation $y = 8 - 2^{x-1}$, $0 \le x \le 4$

The curve C meets the x-axis at the point A and meets the y-axis at the point B.

The region R, shown shaded in Figure 1, is bounded by the curve C and the straight line through A and B.

(c) Use your answer to part (b) to find an approximate value for the area of R. (2)

Figure 1 shows a sketch of part of the curve with equation $y = x^2 \ln x, x \ge 1$

The finite region *R*, shown shaded in Figure 1, is bounded by the curve, the *x*-axis and the line x = 2

The table below shows corresponding values of *x* and *y* for $y = x^2 \ln x$

x	1	1.2	1.4	1.6	1.8	2
У	0	0.2625		1.2032	1.9044	2.7726

(a) Complete the table above, giving the missing value of y to 4 decimal places. (1)

- (b) Use the trapezium rule with all the values of y in the completed table to obtain an estimate for the area of R, giving your answer to 3 decimal places. (3)
- (c) Use integration to find the exact value for the area of R. (5)