Trapezium Rule Difficulty: Easy ## **Question Paper 1** | Level | A Level only | |------------|------------------| | Subject | Maths - Pure | | Exam Board | Edexcel | | Topic | Integration | | Sub-Topic | Trapezium Rule | | Difficulty | Easy | | Booklet | Question Paper 1 | Time allowed: 43 minutes Score: /36 Percentage: /100 #### **Grade Boundaries:** | A* | Α | В | С | D | E | U | |------|-----|-----|-----|-----|-----|------| | >76% | 61% | 52% | 42% | 33% | 23% | <23% | 1 The speed, $v \text{ m s}^{-1}$, of a train at time t seconds is given by $$v = \sqrt{(1.2^t - 1)}, \quad 0 \le t \le 30.$$ The following table shows the speed of the train at 5 second intervals. | t | 0 | 5 | 10 | 15 | 20 | 25 | 30 | |---|---|------|------|----|------|----|----| | v | 0 | 1.22 | 2.28 | | 6.11 | | | (a) Complete the table, giving the values of v to 2 decimal places. **(3)** The distance, s metres, travelled by the train in 30 seconds is given by $$s = \int_0^{30} \sqrt{(1.2^t - 1)} \, dt.$$ (b) Use the trapezium rule, with all the values from your table, to estimate the value of s. (3) | (a) In the space provided, sketch the graph | of $y = 3^x$, $x \in \mathbb{R}$, showing the coordinates of | |---|--| | the point at which the graph meets the | y-axis. | **(2)** (b) Complete the table, giving the values of 3^x to 3 decimal places. | х | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1 | |----|---|-------|-------|-----|-----|---| | 3x | | 1.246 | 1.552 | | | 3 | **(2)** (c) Use the trapezium rule, with all the values from your table, to find an approximation for the value of $\int_0^1 3^x dx$. The curve shown in Figure 1 has equation $y = e^x \sqrt{(\sin x)}$, $0 \le x \le \pi$. The finite region R bounded by the curve and the x-axis is shown shaded in Figure 1. (a) Complete the table below with the values of y corresponding to $x = \frac{\pi}{4}$ and $\frac{\pi}{2}$, giving your answers to 5 decimal places. | x | 0 | $\frac{\pi}{4}$ | $\frac{\pi}{2}$ | $\frac{3\pi}{4}$ | π | |---|---|-----------------|-----------------|------------------|---| | y | 0 | | | 8.87207 | 0 | **(2)** (b) Use the trapezium rule, with all the values in the completed table, to obtain an estimate for the area of the region *R*. Give your answer to 4 decimal places. $$y = \sqrt{(5^x + 2)}$$ (a) Complete the table below, giving the values of y to 3 decimal places. | x | 0 | 0.5 | 1 | 1.5 | 2 | |---|---|-----|-------|-------|---| | y | | | 2.646 | 3.630 | | **(2)** (b) Use the trapezium rule, with all the values of y from your table, to find an approximation for the value of $\int_0^2 \sqrt{(5^x+2)} dx$. Figure 1 Figure 1 shows part of the curve with equation $y = e^{0.5x^2}$. The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, the y-axis and the line x = 2. (a) Complete the table with the values of y corresponding to x = 0.8 and x = 1.6. | x | 0 | 0.4 | 0.8 | 1.2 | 1.6 | 2 | |---|-------|-------------------|-----|------------|-----|-------| | у | e^0 | e ^{0.08} | | $e^{0.72}$ | | e^2 | **(1)** (b) Use the trapezium rule with all the values in the table to find an approximate value for the area of R, giving your answer to 4 significant figures. **(3)** $$y = \sqrt{10x - x^2}.$$ (a) Complete the table below, giving the values of y to 2 decimal places. | x | 1 | 1.4 | 1.8 | 2.2 | 2.6 | 3 | |---|---|------|-----|-----|------|---| | у | 3 | 3.47 | | | 4.39 | | **(2)** (b) Use the trapezium rule, with all the values of y from your table, to find an approximation for the value of $\int_{1}^{3} \sqrt{(10x-x^2)} dx$.