

Trapezium Rule Difficulty: Easy

Question Paper 1

Level	A Level only
Subject	Maths - Pure
Exam Board	Edexcel
Topic	Integration
Sub-Topic	Trapezium Rule
Difficulty	Easy
Booklet	Question Paper 1

Time allowed: 43 minutes

Score: /36

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>76%	61%	52%	42%	33%	23%	<23%

1

The speed, $v \text{ m s}^{-1}$, of a train at time t seconds is given by

$$v = \sqrt{(1.2^t - 1)}, \quad 0 \le t \le 30.$$

The following table shows the speed of the train at 5 second intervals.

t	0	5	10	15	20	25	30
v	0	1.22	2.28		6.11		

(a) Complete the table, giving the values of v to 2 decimal places.

(3)

The distance, s metres, travelled by the train in 30 seconds is given by

$$s = \int_0^{30} \sqrt{(1.2^t - 1)} \, dt.$$

(b) Use the trapezium rule, with all the values from your table, to estimate the value of s.

(3)

(a) In the space provided, sketch the graph	of $y = 3^x$, $x \in \mathbb{R}$, showing the coordinates of
the point at which the graph meets the	y-axis.

(2)

(b) Complete the table, giving the values of 3^x to 3 decimal places.

х	0	0.2	0.4	0.6	0.8	1
3x		1.246	1.552			3

(2)

(c) Use the trapezium rule, with all the values from your table, to find an approximation for the value of $\int_0^1 3^x dx$.

The curve shown in Figure 1 has equation $y = e^x \sqrt{(\sin x)}$, $0 \le x \le \pi$. The finite region R bounded by the curve and the x-axis is shown shaded in Figure 1.

(a) Complete the table below with the values of y corresponding to $x = \frac{\pi}{4}$ and $\frac{\pi}{2}$, giving your answers to 5 decimal places.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
y	0			8.87207	0

(2)

(b) Use the trapezium rule, with all the values in the completed table, to obtain an estimate for the area of the region *R*. Give your answer to 4 decimal places.

$$y = \sqrt{(5^x + 2)}$$

(a) Complete the table below, giving the values of y to 3 decimal places.

x	0	0.5	1	1.5	2
y			2.646	3.630	

(2)

(b) Use the trapezium rule, with all the values of y from your table, to find an approximation for the value of $\int_0^2 \sqrt{(5^x+2)} dx$.

Figure 1

Figure 1 shows part of the curve with equation $y = e^{0.5x^2}$. The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, the y-axis and the line x = 2.

(a) Complete the table with the values of y corresponding to x = 0.8 and x = 1.6.

x	0	0.4	0.8	1.2	1.6	2
у	e^0	e ^{0.08}		$e^{0.72}$		e^2

(1)

(b) Use the trapezium rule with all the values in the table to find an approximate value for the area of R, giving your answer to 4 significant figures.

(3)

$$y = \sqrt{10x - x^2}.$$

(a) Complete the table below, giving the values of y to 2 decimal places.

x	1	1.4	1.8	2.2	2.6	3
у	3	3.47			4.39	

(2)

(b) Use the trapezium rule, with all the values of y from your table, to find an approximation for the value of $\int_{1}^{3} \sqrt{(10x-x^2)} dx$.