

Iteration Difficulty: Easy

Question Paper 2

Level	A Level only		
Subject	Maths - Pure		
Exam Board	Edexcel		
Торіс	Numerical Methods		
Sub-Topic	Iteration		
Difficulty	Easy		
Booklet	Question Paper 2		

Time allowed:	56 minutes		
Score:	/47		
Percentage:	/100		

Grade Boundaries:

A*	А	В	С	D	E	U
>76%	61%	52%	42%	33%	23%	<23%

Question 1

$$f(x) = 2\sin(x^2) + x - 2, \quad 0 \le x < 2\pi$$

(a) Show that f(x) = 0 has a root α between x = 0.75 and x = 0.85

(2)

The equation f(x) = 0 can be written as $x = \left[\arcsin\left(1 - 0.5x\right)\right]^{\frac{1}{2}}$.

(b) Use the iterative formula

$$x_{n+1} = \left[\arcsin\left(1 - 0.5x_n\right) \right]^{\frac{1}{2}}, \quad x_0 = 0.8$$

to find the values of x_1 , x_2 and x_3 , giving your answers to 5 decimal places.

(3)

(c) Show that $\alpha = 0.80157$ is correct to 5 decimal places.

(3)

× 7

(Total 8 marks)

$$f(x) = \ln(x+2) - x + 1, \quad x > -2, \quad x \in \mathbb{R}$$
.

(a) Show that there is a root of f(x) = 0 in the interval 2 < x < 3.

(2)

(b) Use the iterative formula

$$x_{n+1} = \ln(x_n + 2) + 1, \ x_0 = 2.5$$

to calculate the values of x_1 , x_2 and x_3 giving your answers to 5 decimal places.

(3)

(c) Show that x = 2.505 is a root of f(x) = 0 correct to 3 decimal places.

(2)

$$f(x) = x^3 + 3x^2 + 4x - 12$$

(a) Show that the equation f(x) = 0 can be written as

$$x = \sqrt{\left(\frac{4(3-x)}{(3+x)}\right)}, \quad x \neq -3$$
 (3)

The equation $x^3 + 3x^2 + 4x - 12 = 0$ has a single root which is between 1 and 2

(b) Use the iteration formula

$$x_{n+1} = \sqrt{\left(\frac{4(3-x_n)}{(3+x_n)}\right)}, \ n \ge 0$$

with $x_0 = 1$ to find, to 2 decimal places, the value of x_1, x_2 and x_3 . (3)

The root of f(x) = 0 is *a*.

(c) By choosing a suitable interval, prove that $\alpha = 1.272$ to 3 decimal places.

(3)

$$g(x) = e^{x-1} + x - 6$$

(a) Show that the equation g(x) = 0 can be written as

$$x = \ln(6 - x) + 1, \quad x < 6$$
 (2)

The root of g(x) = 0 is α .

The iterative formula

$$x_{n+1} = \ln(6 - x_n) + 1,$$
 $x_0 = 2$

is used to find an approximate value for α .

(b) Calculate the values of x_1 , x_2 and x_3 to 4 decimal places.

(3)

(c) By choosing a suitable interval, show that a = 2.307 correct to 3 decimal places.

(3)

(Total 8 marks)

Question 5

$$\mathbf{f}(x) = x^4 - 8x^2 + 2$$

(a) Show that the equation f(x) = 0 can be written as $x = \sqrt{ax^4 + b}$, x > 0, where *a* and *b* are constants to be found.

Let $x_0 = 1.5$.

(b) Use the iteration formula $x_{n+1} = \sqrt{ax_n^4 + b}$ together with your values of *a* and *b* from part (a), to find, to 4 decimal places, the values of x_1, x_2, x_3 and x_4 .

(2 marks)

(2 marks)

A root of f(x) = 0 is α . By choosing a suitable interval,

(c) prove that $\alpha = -2.782$ to 3 decimal places.

(3 marks)

$$f(x) = x^3 - 2x - 5.$$

(a) Show that there is a root **a** of f(x) = 0 for *x* in the interval [2,3].

(2)

The root **a** is to be estimated using the iterative formula

$$x_{n+1} = \sqrt{\left(2 + \frac{5}{x_n}\right)}, \quad x_0 = 2.$$

(b) Calculate the values of x_1 , x_2 , x_3 and x_4 , giving your answers to 4 significant figures. (3)

(c) Prove that, to 5 significant figures, a is 2.0946.

(3)