Iteration
 Difficulty: Easy

Question Paper 2

Level	A Level only
Subject	Maths - Pure
Exam Board	Edexcel
Topic	Numerical Methods
Sub-Topic	Iteration
Difficulty	Easy
Booklet	Question Paper 2

Time allowed: 56 minutes

Score: /47
Percentage: /100

Grade Boundaries:

A *	A	B	C	D	E	U
$>76 \%$	61%	52%	42%	33%	23%	$<23 \%$

$$
\mathrm{f}(x)=2 \sin \left(x^{2}\right)+x-2, \quad 0 \leqslant x<2 \pi
$$

(a) Show that $\mathrm{f}(x)=0$ has a root α between $x=0.75$ and $x=0.85$

The equation $\mathrm{f}(x)=0$ can be written as $x=[\arcsin (1-0.5 x)]^{\frac{1}{2}}$.
(b) Use the iterative formula

$$
x_{n+1}=\left[\arcsin \left(1-0.5 x_{n}\right)\right]^{\frac{1}{2}}, \quad x_{0}=0.8
$$

to find the values of x_{1}, x_{2} and x_{3}, giving your answers to 5 decimal places.
(3)
(c) Show that $\alpha=0.80157$ is correct to 5 decimal places.

$$
\mathrm{f}(x)=\ln (x+2)-x+1, \quad x>-2, \quad x \in \mathbb{R} .
$$

(a) Show that there is a root of $\mathrm{f}(x)=0$ in the interval $2<x<3$.
(b) Use the iterative formula

$$
x_{n+1}=\ln \left(x_{n}+2\right)+1, x_{0}=25
$$

to calculate the values of x_{1}, x_{2} and x_{3} giving your answers to 5 decimal places.
(c) Show that $x=2.505$ is a root of $\mathrm{f}(x)=0$ correct to 3 decimal places.

$$
\mathrm{f}(x)=x^{3}+3 x^{2}+4 x-12
$$

(a) Show that the equation $\mathrm{f}(x)=0$ can be written as

$$
\begin{equation*}
x=\sqrt{\left(\frac{4(3-x)}{(3+x)}\right), \quad x \neq-3} \tag{3}
\end{equation*}
$$

The equation $x^{3}+3 x^{2}+4 x-12=0$ has a single root which is between 1 and 2
(b) Use the iteration formula

$$
\begin{equation*}
x_{n+1}=\sqrt{ }\left(\frac{4\left(3-x_{n}\right)}{\left(3+x_{n}\right)}\right), n \geqslant 0 \tag{3}
\end{equation*}
$$

with $x_{0}=1$ to find, to 2 decimal places, the value of x_{1}, x_{2} and x_{3}.

The root of $\mathrm{f}(x)=0$ is a.
(c) By choosing a suitable interval, prove that $\alpha=1.272$ to 3 decimal places.

$$
\mathrm{g}(x)=\mathrm{e}^{x-1}+x-6
$$

(a) Show that the equation $\mathrm{g}(x)=0$ can be written as

$$
\begin{equation*}
x=\ln (6-x)+1, \quad x<6 \tag{2}
\end{equation*}
$$

The root of $\mathrm{g}(x)=0$ is α.
The iterative formula

$$
x_{n+1}=\ln \left(6-x_{n}\right)+1, \quad x_{0}=2
$$

is used to find an approximate value for α.
(b) Calculate the values of x_{1}, x_{2} and x_{3} to 4 decimal places.
(c) By choosing a suitable interval, show that $a=2.307$ correct to 3 decimal places.

$$
\mathrm{f}(x)=x^{4}-8 x^{2}+2
$$

(a) Show that the equation $\mathrm{f}(x)=0$ can be written as $\quad x=\sqrt{a x^{4}+b}, x>0$, where a and b are constants to be found.

$$
\text { Let } x_{0}=1.5 \text {. }
$$

(b) Use the iteration formula $x_{n+1}=\sqrt{a x_{n}^{4}+b}$ together with your values of a and b from part (a), to find, to 4 decimal places, the values of x_{1}, x_{2}, x_{3} and x_{4}.

A root of $\mathrm{f}(x)=0$ is α. By choosing a suitable interval,
(c) prove that $\alpha=-2.782$ to 3 decimal places.

$$
\mathrm{f}(x)=x^{3}-2 x-5
$$

(a) Show that there is a root a of $\mathrm{f}(x)=0$ for x in the interval $[2,3]$.

The root a is to be estimated using the iterative formula

$$
x_{n+1}=\sqrt{\left(2+\frac{5}{x_{n}}\right)}, x_{0}=2
$$

(b) Calculate the values of x_{1}, x_{2}, x_{3} and x_{4}, giving your answers to 4 significant figures.
(c) Prove that, to 5 significant figures, a is 2.0946 .

