

Algebraic Long Division Difficulty: Medium

Question Paper 2

Level	A Level
Subject	Maths Pure 3
Exam Board	CIE
Торіс	Algebra
Sub-Topic	Algebraic long division
Difficulty	Medium
Booklet	Question Paper 2

Time allowed:	29 minutes		
Score:	/21		
Percentage:	/100		

Grade Boundaries:

A*	А	В	С	D	E	
>90%	81%	70%	58%	46%	34%	

The polynomial $x^4 + 2x^3 + ax + b$, where a and b are constants, is divisible by $x^2 - x + 1$. Find the values of a and b. [5]

Question 2

The polynomial $x^4 + 3x^2 + a$, where *a* is a constant, is denoted by p(x). It is given that x + x + 2 is a factor of p(x). Find the value of *a* and the other quadratic factor of p(x). [4]

The polynomial $4x^3 - 4x^2 + 3x + a$, where a is a constant, is denoted by p(x). It is given that p(x) is divisible by $2x^2 - 3x + 3$.

(i) Find the value of *a*.

[3]

(ii) When a has this value, solve the inequality p(x) < 0, justifying your answer. [3]

The polynomial $x^4 + 3x^3 + ax + 3$ is denoted by p(x). It is given that p(x) is divisible by $x^2 - x + 1$.

[4]

(i) Find the value of *a*.

(ii) When *a* has this value, find the real roots of the equation p(x) = 0. [2]

4