Algebra, Differentiation and Numerical Methods Difficulty: Hard

Question Paper 2

Level	A Level only
Subject	Maths - Pure
Exam Board	Edexcel
Topic	Algebra, Differentiation and Numerical
	Methods
Sub-Topic	
Difficulty	Hard
Booklet	Question Paper 2

Time allowed: 66 minutes
Score: /55

Percentage: /100

Grade Boundaries:

A*	A	B	C	D	E	U
$>76 \%$	61%	52%	42%	33%	23%	$<23 \%$

$$
\mathrm{f}(x)=1-\frac{3}{x+2}+\frac{3}{(x+2)^{2}}, x \neq-2 .
$$

(a) Show that $\mathrm{f}(x)=\frac{x^{2}+x+1}{(x+2)^{2}}, x \neq-2$.
(b) Show that $x^{2}+x+1>0$ for all values of x.
(c) Show that $\mathrm{f}(x)>0$ for all values of $x, x \neq-2$.
(a) Sketch the curve with equation $y=\ln x$.
(b) Show that the tangent to the curve with equation $y=\ln x$ at the point $(\mathrm{e}, 1)$ passes through the origin.
(c) Use your sketch to explain why the line $y=m x$ cuts the curve $y=\ln x$ between $x=1$ and $x=\mathrm{e}$ if $0<m<\frac{1}{1}$. e

Taking $x_{0}=1.86$ and using the iteration $x_{n}+\overline{\overline{1}} \mathrm{e}^{\frac{1}{3} x_{n}}$,
(d) calculate $x_{1}, x_{2}, x_{3}, x_{4}$ and x_{5}, giving your answer to x_{5} to 3 decimal places.

The root of $\ln x-\frac{1}{3} x=0$ is α.
(e) By considering the change of sign of $\ln x-\frac{1}{3} x$ over a suitable interval, show that your answer for x_{5} is an accurate estimate of α, correct to 3 decimal places.

The point P lies on the curve with equation

$$
x=(4 y-\sin 2 y)^{2}
$$

Given that P has (x, y) coordinates $\left(p, \frac{\pi}{2}\right)$, where p is a constant,
(a) find the exact value of p.

The tangent to the curve at P cuts the y-axis at the point A.
(b) Use calculus to find the coordinates of A.

The number of bacteria, N, present in a liquid culture at time t hours after the start of a scientific study is modelled by the equation

$$
N=5000(1.04)^{t}, \quad t \geq 0
$$

where N is a continuous function of t.
(a) Find the number of bacteria present at the start of the scientific study.
(b) Find the percentage increase in the number of bacteria present from $t=0$ to $t=2$

Given that $N=15000$ when $t=T$,
(c) find the value of $\frac{\mathrm{d} N}{\mathrm{~d} t}$ when $t=T$, giving your answer to 3 significant figures.

A scientist is studying a population of mice on an island.
The number of mice, N, in the population, t months after the start of the study, is modelled by the equation

$$
N=\frac{900}{3+7 \mathrm{e}^{-0.25 t},} \quad t \in \mathbb{R}, \quad t \geqslant 0
$$

(a) Find the number of mice in the population at the start of the study.
(b) Show that the rate of growth $\frac{\mathrm{d} N}{\mathrm{~d} t}$ is given by $\frac{\mathrm{d} N}{\mathrm{~d} t}=\frac{N(300-N)}{1200}$

The rate of growth is a maximum after T months.
(c) Find, according to the model, the value of T.

According to the model, the maximum number of mice on the island is P.
(d) State the value of P.

Figure 2
Figure 2 shows a sketch of part of the curve with equation

$$
\mathrm{g}(x)=x^{2}(1-x) \mathrm{e}^{-2 x}, \quad x \geq 0
$$

(a) Show that $\mathrm{g}^{\prime}(x)=\mathrm{f}(x) \mathrm{e}^{-2 x}$, where $\mathrm{f}(x)$ is a cubic function to be found.
(b) Hence find the range of g.
(c) State a reason why the function $\mathrm{g}^{-1}(x)$ does not exist.

