Transformations of graphs Difficulty : Easy
 Question Paper 1

Level	AS \& A Level
Subject	Maths - Pure
Exam Board	Edexcel
Topic	Graphs and transformations
Sub-Topic	Transformations of graphs
Difficulty	Easy
Booklet	Question Paper 1

Time allowed: 49 minutes
Score: /41
Percentage: /100

Grade Boundaries:

A *	A	B	C	D	E	U
$>76 \%$	61%	52%	42%	33%	23%	$<23 \%$

On separate diagrams, sketch the graphs of
(a) $y=(x+3)^{2}$,
(3)
(b) $y=(x+3)^{2}+k$, where k is a positive constant.

Show on each sketch the coordinates of each point at which the graph meets the axes.
(2)
(Total 5 marks)

Question 2

Figure 1

Figure 1 shows a sketch of the curve with equation $y=\mathrm{f}(x)$. The curve crosses the x-axis at the points $(2,0)$ and $(4,0)$. The minimum point on the curve is $P(3,-2)$.

In separate diagrams sketch the curve with equation
(a) $y=-\mathrm{f}(x)$,
(b) $y=\mathrm{f}(2 x)$.

On each diagram, give the coordinates of the points at which the curve crosses the x-axis, and the coordinates of the image of P under the given transformation.

Figure 1

Figure 1 shows a sketch of the curve with equation $y=\mathrm{f}(x)$. The curve passes through the origin O and through the point $(6,0)$. The maximum point on the curve is $(3,5)$.

On separate diagrams, sketch the curve with equation
(a) $y=3 \mathrm{f}(x)$,
(b) $y=\mathrm{f}(x+2)$.

On each diagram, show clearly the coordinates of the maximum point and of each point at which the curve crosses the x-axis.

Figure 1

Figure 1 shows a sketch of the curve with equation $y=\mathrm{f}(x)$. The curve passes through the points $(0,3)$ and $(4,0)$ and touches the x-axis at the point $(1,0)$.

On separate diagrams sketch the curve with equation
(a) $y=\mathrm{f}(x+1)$,
(b) $y=2 \mathrm{f}(x)$,
(c) $y=\mathrm{f}\left(\frac{1}{2} x\right)$.

On each diagram show clearly the coordinates of all the points where the curve meets the axes.

Given that

$$
\begin{equation*}
\mathrm{f}(x)=\frac{1}{x}, \quad x \neq 0 \tag{4}
\end{equation*}
$$

(a) sketch the graph of $y=\mathrm{f}(x)+3$ and state the equations of the asymptotes.
(b) Find the coordinates of the point where $y=\mathrm{f}(x)+3$ crosses a coordinate axis.

Question 6

Figure 1
Figure 1 shows a sketch of the curve with equation $y=\frac{3}{-}, x \neq 0$.
x
(a) On a separate diagram, sketch the curve with equation $y=\frac{3}{x+2}, x \neq-2$, showing the coordinates of any point at which the curve crosses a coordinate axis.
(b) Write down the equations of the asymptotes of the curve in part (a).

Figure 1
Figure 1 shows a sketch of the curve with equation $y=\mathrm{f}(x)$. The curve passes through the point $(0,7)$ and has a minimum point at $(7,0)$.

On separate diagrams, sketch the curve with equation
(a) $y=\mathrm{f}(x)+3$,
(b) $y=\mathrm{f}(2 x)$.

On each diagram, show clearly the coordinates of the minimum point and the coordinates of the point at which the curve crosses the y-axis.
(Total 5 marks)

