

Transformations of graphs Difficulty : Easy

Question Paper 1

Level	AS & A Level		
Subject	Maths - Pure		
Exam Board	Edexcel		
Торіс	Graphs and transformations		
Sub-Topic	Transformations of graphs		
Difficulty	Easy		
Booklet	Question Paper 1		

Time allowed:	49 minutes		
Score:	/41		
Percentage:	/100		

Grade Boundaries:

A*	А	В	С	D	E	U
>76%	61%	52%	42%	33%	23%	<23%

On separate diagrams, sketch the graphs of

(a)
$$y = (x+3)^2$$
, (3)

(b) $y = (x + 3)^2 + k$, where k is a positive constant.

Show on each sketch the coordinates of each point at which the graph meets the axes. (2)

(Total 5 marks)

Question 2

Figure 1 shows a sketch of the curve with equation y = f(x). The curve crosses the *x*-axis at the points (2, 0) and (4, 0). The minimum point on the curve is P(3, -2).

In separate diagrams sketch the curve with equation

$$(a) \quad y = -\mathbf{f}(x), \tag{3}$$

(b)
$$y = f(2x)$$
. (3)

On each diagram, give the coordinates of the points at which the curve crosses the x-axis, and the coordinates of the image of P under the given transformation.

Figure 1 shows a sketch of the curve with equation y = f(x). The curve passes through the origin *O* and through the point (6, 0). The maximum point on the curve is (3, 5).

On separate diagrams, sketch the curve with equation

(a)
$$y = 3f(x)$$
, (2)

(b)
$$y = f(x+2)$$
. (3)

On each diagram, show clearly the coordinates of the maximum point and of each point at which the curve crosses the *x*-axis.

(Total 5 marks)

Question 4

Figure 1 shows a sketch of the curve with equation y = f(x). The curve passes through the points (0, 3) and (4, 0) and touches the *x*-axis at the point (1, 0).

On separate diagrams sketch the curve with equation

(a)
$$y = f(x+1)$$
, (3)

(b)
$$y = 2 f(x)$$
, (3)

(c)
$$y = f\left(\frac{1}{2}x\right)$$
. (3)

On each diagram show clearly the coordinates of all the points where the curve meets the axes.

(Total 9 marks)

Question 6

Given that

$$\mathbf{f}(x) = \frac{1}{x}, \quad x \neq 0,$$

(a) sketch the graph of y = f(x) + 3 and state the equations of the asymptotes. (4)

(b) Find the coordinates of the point where y = f(x) + 3 crosses a coordinate axis. (2)

(Total 6 marks)

Figure 1 shows a sketch of the curve with equation $y = \frac{3}{2}, x \neq 0$.

(a) On a separate diagram, sketch the curve with equation $y = \frac{3}{x+2}, x \neq -2$,

showing the coordinates of any point at which the curve crosses a coordinate axis. (3)

(b) Write down the equations of the asymptotes of the curve in part (a).

(2)

Figure 1

Figure 1 shows a sketch of the curve with equation y = f(x). The curve passes through the point (0, 7) and has a minimum point at (7, 0).

On separate diagrams, sketch the curve with equation

(a)
$$y = f(x) + 3$$
, (3)

(b)
$$y = f(2x)$$
. (2)

On each diagram, show clearly the coordinates of the minimum point and the coordinates of the point at which the curve crosses the *y*-axis.

(Total 5 marks)