

Cell Structure

Question Paper 2

Level	A Level
Subject	Biology
Exam Board	OCR
Module	Foundations in Biology
Торіс	Cell Structure
Booklet	Question Paper 2

Time allowed:	38 minutes	
Score:	/28	
Percentage:	/100	

Grade Boundaries:

A*	А	В	С	D	E
>69%	56%	50%	42%	34%	26%

The use of microscopy has greatly enhanced our knowledge of cell structure.

(a) Explain the difference between *magnification* and *resolution*.

[2]

(b) State the resolution that can be achieved by each of the following types of microscope.

light microscope	
transmission electron microscope	 [2]

(c) Fig. 4.1 is an electron micrograph showing part of a nucleus.

Fig. 4.1

x 25000

(i) A student stated that Fig. 4.1 was taken using a scanning electron microscope.

What evidence supports the student's statement?	[1]
---	-----

(ii) On Fig. 4.1, the nuclear pore complex, labelled **A**, is 3 mm wide.

Calculate the actual diameter of the pore, in nanometres. [2]

(iii) State the function of the nuclear pores. [1]

(d) State two features of a eukaryotic cell, other than nuclear pores, that would not be visible using medium power of a light microscope. [2]

[Total: 10]

(a) Table 4.1 compares the structures of prokaryotic and eukaryotic cells.

Complete the table.

Table 4.1

prokaryotic	eukaryotic
no true nucleus	genetic material held in a nucleus
genetic material consists of 'naked' DNA	
average diameter of cell $0.5 - 5 \mu m$	
	ribosomes about 22 nm in diameter
	cell wall sometimes present

- (b) The cytoskeleton is an important component in the cytoplasm of all eukaryotic cells.
 - (i) Name **one** structure, **associated with the cytoskeleton**, which can bring about cell movement.

[1]

[4]

(ii) Suggest two processes inside cells that rely on the cytoskeleton for movement. [2]

[Total: 7]

Fig. 1.1 is a diagram of an animal cell as seen using a transmission electron microscope.

Fig. 1.1

- (a) (i) Name the structures of the cell labelled A, B, C and D.[4]ABCD
 - (ii) Structures C and E are examples of the same organelle.Suggest why E looks so different to C. [2]

(iii) Calculate the actual length of structure **C**.

Show your working and give your answer in micrometres (µm).

[2]

(b) Proteins are produced by the structure labelled **F**. Some of these proteins may be **extracellular** proteins that are released from the cell.

Outline the sequence of events following the production of extracellular proteins that leads to their release from the cell.

[3]

[Total: 11]