

Hormonal communication

Question Paper 2

Level	A Level
Subject	Biology
Exam Board	OCR
Module	Communication, homeostasis and energy
Topic	Hormonal communication
Booklet	Question Paper 2

Time allowed: 43 minutes

Score: /32

Percentage: /100

Grade Boundaries:

A*	A	В	С	D	E
>69%	56%	50%	42%	34%	26%

1

Question 1

- (a) A doctor arranged for a 59-year-old patient to have a series of blood tests. One of these tests was to determine the patient's 'fasting blood glucose' concentration.
 - The result of this test indicates whether or not the patient's blood glucose concentration is being regulated within the normal range.
 - The validity of the result relies on the patient not having eaten for at least eight hours before the test.
 - The patient confirmed to the doctor that he had not eaten since the previous evening.
 - (i) What condition was being tested for in this 59-year-old patient? [1]
 - (ii) Why was it important that the patient had not eaten for at least eight hours before the test? [1]
 - (iii) The result of the patient's fasting blood glucose test was 7.0 mmol dm⁻³.

The upper limit for 'normal' blood glucose concentration is considered to be 5.9 mmol dm⁻³.

Calculate the percentage by which this patient's blood glucose concentration is higher than the upper limit for normal concentration.

Show your working. Give your answer to one decimal place. [2]

- (b) The patient was sent for a further blood test, known as the haemoglobin A1C (HbA1C) test.
 - Glucose combines with haemoglobin in the bloodstream to form a 'glycosylated haemoglobin' molecule, HbA1C.
 - The concentration of HbA1C is directly proportional to the mean concentration of glucose in the blood over an eight to twelve week period.

Suggest why a single HbA1C test cannot indicate accurately the mean blood glucose concentration for a period longer than twelve weeks.

(c)	The result of the patient's fasting blood glucose test showed a blood glucose concentration
	higher than the normal range even though the patient had not eaten food for at least eight
	hours before providing a blood sample.

The result of the patient's HbA1C test indicated that his mean blood glucose concentration had been within the normal range for the previous eight to twelve weeks.

buggest an explanation for the patients high value for the lasting blood gladese test.	Suggest an explanation for the patie	ent's high value for the fa s	sting blood glucose test.	[1]
--	--------------------------------------	--------------------------------------	---------------------------	-----

- (d) Another patient shows severe symptoms of unregulated blood glucose concentration. Under certain circumstances this condition may need to be treated with glucagon injections.
 - (i) Under what circumstances might this patient need to be given a glucagon injection?

[1]

(ii) Describe how glucagon is involved in the regulation of blood glucose concentration in a person who is able to regulate their blood glucose concentration correctly.

In your answer, you should use appropriate technical terms, spelled correctly.

[5]

[Total: 13]

Organisms respond to changes in their internal environment. These responses are controlled by nervous and hormonal mechanisms.

(a)	The concentration of blood glucose is regulated by hormones.		
Complete the passage below, using the most suitable term in each case.			
	The pancreas releases hormones directly into the blood and these regulate the		
	concentration of blood glucose. The pancreas, therefore, acts as an		
	gland.		
	When the blood glucose concentration increases, insulin is released from the beta		
	cells in the regions of the pancreas known as the		
	A different hormone, glucagon, is released from the alpha cells of the pancreas and this		
	hormone causes to be broken down into glucose,		
	in a process known as	[4]	
(b)	The heart rate is controlled by both nervous and hormonal mechanisms.		
	(i) Name one hormone which will increase the heart rate.	[1]	
	(ii) State one way in which the nervous system decreases the heart rate.	[1]	
	[Tota	al: 6]	

(a) The pancreas is an unusual gland as it is both an endocrine and an exocrine gland.

Fig. 4.1, **on the insert**, shows a group of cells in the pancreas.

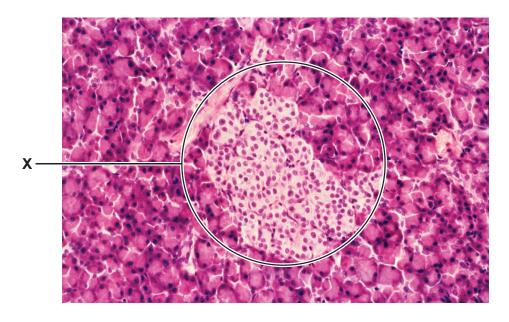


Fig. 4.1

(i) State the name given to the group of cells labelled ${\bf X}$.

[1]

(ii) Describe the different ways in which the pancreas acts as both an endocrine and an exocrine gland.

In your answer, you should use appropriate technical terms, spelt correctly. [5]

(b			/pe of cell in the pancreas is responsible for secreting insulin. I in the secretion of insulin are listed below.	The various
		Α	Glucose is phosphorylated and metabolised to produce ATP	
		В	Potassium channels open, allowing potassium ions to diffuse out of the cell	
		С	The change in voltage across the membrane causes calcium channels to open	
		D	Glucose enters the cell	
		E	The movement of ions results in a potential difference across the cell surface membrane of –70 mV	
		F	Calcium ions diffuse into the cell	
		G	The presence of extra ATP causes the potassium channels to close	
		Н	The membrane potential changes to –30 mV	
		J	The calcium ions cause the vesicles to fuse with the membrane and release insulin	
	_	e the f	ollowing list by placing the events in the correct order.	[4]
(c) (i			antages of treating Type 1 diabetes by using insulin that has be modified bacteria rather than insulin that has been extracted f	
(ii)			atment for Type 1 diabetes is the use of stem cells.	
	State an	ı advaı	ntage of this form of treatment compared to treatment using ir	
				[Total: 13]