CAMBRIDGE

$\overline{\text { INTERNATIONAL EXAMINATIONS }}$

JUNE 2003

GCE A AND AS LEVEL

MARK SCHEME
MAXIMUM MARK: 60
SYLLABUS/COMPONENT: 9701/02
CHEMISTRY
Theory 1 (Structured Questions)

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	2

1 (a) Atoms which have the same number of protons (or same element) but different numbers of neutrons (1)
(b) (i) ${ }^{35} \mathrm{Cl}$ (1)
(ii) $\mathrm{H}^{37} \mathrm{Cl}$ (1)
(c) $\quad \mathrm{HCl}$ line at 36 has rel. abundance of 90

These show ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$ in ratio $3: 1$ (1)
[or use of 35 and 37]
(d) Mean of the two isotopes $\frac{3 \times 35+1 \times 37}{4}=35.5$ (1)

2 (a) (i) That the volume of the gas molecules is negligible compared to the volume of gas (1)
(ii) That there are no intermolecular forces OR collisions of the molecules are perfectly elastic
Particles are in constant motion, losing no energy on collision (1) any two [2]
(b) $\quad 6.02 \times 10^{23} \quad$ (1)
(c) (i) $\mathrm{r}=\underline{0.192} \mathrm{~nm}$ (1) Assume most candidates will work in dm^{3}

$$
v=\frac{4}{3} \times 3.14 \times\left(1.92 \times 10^{-9}\right)^{3}=2.96 \times 10^{-26} \mathrm{dm}^{3}\left(2.96 \times 10^{-29} \mathrm{~m}^{3}\right)(1)
$$

(ii) $2.96 \times 10^{-26} \times \underline{6.02 \times 10^{23}}(1)=1.78 \times 10^{-2} \mathrm{dm}^{3}\left(1.78 \times 10^{-5} \mathrm{~m}^{3}\right)(1)$
(iii) $24 \mathrm{dm}^{3}\left(0.024 \mathrm{~m}^{3}\right)(1)$
(iv) $\frac{1.78 \times 10^{-2} \times 10^{2}}{24}=0.074 \%$
(v) Some statement which connects with (a) (i) above (1) max [5]
(d) - hot metals will react with oxygen in air (or nitrogen)

- to form oxides/will burn out/to a powder
- argon will not react
- at high temperatures O_{2} and N_{2} in air will react to give NO_{x}

NOT expansion of gases on heating any two

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	2

3
(a) $\quad \mathrm{N}_{2}+3 \mathrm{H}_{2} \leftrightharpoons 2 \mathrm{NH}_{3}$
exothermic
(1)
[2]
(b) Pr. 50 atm upwards; Temp $400-600^{\circ} \mathrm{C}$; catalyst of iron (1 each, conditions stated)
(c) Too high a temp and equilibrium favours LHS, less ammonia at equilibrium (1)
Too low a temp, rate too slow/not enough molecules have $\mathrm{E}_{\text {act }}$ (1)
(d) (i)

$$
\begin{equation*}
K_{\mathrm{p}}=\frac{\mathrm{PNH}_{3}^{2}}{\mathrm{PN}_{2} \times \mathrm{PH}_{2}^{3}} \tag{1}
\end{equation*}
$$

(ii)

$$
\begin{align*}
K_{p} & =\frac{37.2^{2}}{44.8 \times 105.6^{3}} \tag{1}\\
& =2.62 \times 10^{-5} \mathrm{~atm}^{-2}
\end{align*}
$$

(1) calculation and units
(e) Excess (hence uncontrolled) nitrates leach out of fields into streams, seas (1)
Bacteria or algae grow fast/use oxygen/clog up water (1)
Balance destroyed/fish unable to live
Process called eutrification (1)
any 3
[Total: 13]

4 (a) (i)

(ii)

[2]

Page 3	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	2

(iii)

(in data booklet)
(iv)

(c) (i) $\mathrm{Na}_{2} \mathrm{O} \quad \mathrm{MgO} \quad \mathrm{Al}_{2} \mathrm{O}_{3} \quad \mathrm{P}_{2} \mathrm{O}_{5}\left(\right.$ or $\mathrm{P}_{4} \mathrm{O}_{10}$ or $\left.\mathrm{P}_{2} \mathrm{O}_{3}\right) \mathrm{SO}_{2}$ or SO_{3}
(ii) $\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$ (1)
(iii) $2 \mathrm{NaOH}+\mathrm{SO}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}$
or NaHSO_{3}
OR $2 \mathrm{NaOH}+\mathrm{SO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$ (1) $\quad \mathrm{NaHSO}_{4}$
[Total: 9]

5 (a)

(b) Alkane (1)
(c) (i) Not biodegradable/does not decompose/unreactive Not affected by enzymes
Not attacked by aqueous or polar reagents found in tissues Insoluble/does not absorb water/cotton absorbs water NOT is stronger than cotton [equivalent worthy points; they may overlap - but allow - max 2]

Page 4	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS - JUNE 2003	9701	2

(ii) Alkanes react with oxygen (combustion)

Not possible in muscle (1)
also react with halogens/in U.V. light muscle is internal and no halogens
[ecf for alkene answers in (b)]
[Total: 6]

6 (a)
$\frac{66.7}{12}$
$\frac{11.1}{1}$
22.2
$=5.5=11.1=1.3875$
Divide by 1.3875
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O} \quad$ (1) $\quad 48+8+16=72$ hence $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$
[2]
(b) (i) orange ppt (1) red to yellow/crystals or solid
(ii) ketone (1)
(iii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$ or butanone (1)
(c) (i) $\mathrm{NaBH}_{4} \quad$ allow $\mathrm{NaAlH}_{4}\left(\mathrm{Li} \mathrm{Al} \mathrm{H} H_{4}\right)$ (1) $\quad \mathrm{H}_{2} / \mathrm{Ni}$ or Pt
(ii) secondary alcohol
(iii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOHCH}_{3}$
(1)
[Allow ecf marks if (b) (iii) is butanal]
[Total: 8]

7 (a) (i) e.g.

$\mathrm{H}-\mathrm{CO}_{2} \mathrm{C}_{4} \mathrm{H}_{9}$ any three
(ii) $\mathrm{RCO}_{2} \mathrm{R}^{\prime}+\mathrm{NaOH} \rightarrow \mathrm{RCO}_{2} \mathrm{Na}$ (1) +R OH (1) $\rightarrow \mathrm{RCO}_{2} \mathrm{H}+\mathrm{R}$ 'OH (1) only
(b) (i) * volatile, or liquids (1) immiscible, with water (1) smell (1)
and (ii) any two
(c) (i) solvents, perfumes, flavourings, lotions, olive or palm oils any two
and (ii) To make soap, to make Terylene NOT polyesters
[Maximum Total: 8]

